Narrow your search

Library

KU Leuven (4)

FARO (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2022 (3)

2021 (6)

2012 (1)

Listing 1 - 10 of 10
Sort by

Book
Shahejie-Shahejie/Guanto/Wumishan and Carboniferous/Permian Coal : Paleozoic Total Petroleum Systems in the Bohaiwan basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey)
Authors: ---
Year: 2012 Publisher: Reston, Va. : U.S. Dept. of the Interior, U.S. Geological Survey,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Biogas for Rural Areas
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bioenergy is renewable energy obtained from biomass—any organic material that has stored sunlight in the form of chemical energy. Biogas is among the biofuels that can be obtained from biomass resources, including biodegradable wastes like manure, sewage sludge, the organic fraction of municipal solid wastes, slaughterhouse waste, crop residues, and more recently lignocellulosic biomass and algae. Within the framework of the circular economy, biogas production from biodegradable waste is particularly interesting, as it helps to save resources while reducing environmental pollution. Besides, lignocellulosic biomass and algae do not compete for arable land with food crops (in contrast with energy crops). Hence, they constitute a novel source of biomass for bioenergy.Biogas plants may involve both high-tech and low-tech digesters, ranging from industrial-scale plants to small-scale farms and even households. They pose an alternative for decentralized bioenergy production in rural areas. Indeed, the biogas produced can be used in heaters, engines, combined heat and power units, and even cookstoves at the household level. Notwithstanding, digesters are considered to be a sustainable technology that can improve the living conditions of farmers by covering energy needs and boosting nutrient recycling. Thanks to their technical, socio-economic, and environmental benefits, rural biogas plants have been spreading around the world since the 1970s, with a large focus on farm-based systems and households. However, several challenges still need to be overcome in order to improve the technology and financial viability.


Book
Biogas for Rural Areas
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bioenergy is renewable energy obtained from biomass—any organic material that has stored sunlight in the form of chemical energy. Biogas is among the biofuels that can be obtained from biomass resources, including biodegradable wastes like manure, sewage sludge, the organic fraction of municipal solid wastes, slaughterhouse waste, crop residues, and more recently lignocellulosic biomass and algae. Within the framework of the circular economy, biogas production from biodegradable waste is particularly interesting, as it helps to save resources while reducing environmental pollution. Besides, lignocellulosic biomass and algae do not compete for arable land with food crops (in contrast with energy crops). Hence, they constitute a novel source of biomass for bioenergy.Biogas plants may involve both high-tech and low-tech digesters, ranging from industrial-scale plants to small-scale farms and even households. They pose an alternative for decentralized bioenergy production in rural areas. Indeed, the biogas produced can be used in heaters, engines, combined heat and power units, and even cookstoves at the household level. Notwithstanding, digesters are considered to be a sustainable technology that can improve the living conditions of farmers by covering energy needs and boosting nutrient recycling. Thanks to their technical, socio-economic, and environmental benefits, rural biogas plants have been spreading around the world since the 1970s, with a large focus on farm-based systems and households. However, several challenges still need to be overcome in order to improve the technology and financial viability.


Book
Hydrogen Production Technologies
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hydrogen has been an important feedstock for various industries, and its global market is already valued at hundreds of billions of dollars per year. It is also playing additional roles as a clean alternative energy carrier for power generation and as a crucial feedstock in the bioeconomy. This Special Issue “Hydrogen Production Technologies” highlights different thermochemical, electrochemical, and biological technologies such as high- and low-temperature electrolyzers, microchannel reactors, sorption-enhanced reactors, multi-tubular solar reactors, and anaerobic digestors. It also covers other aspects ranging from reactor design, hydrogen storage, and process analysis of different alternatives.


Book
Hydrogen Production Technologies
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hydrogen has been an important feedstock for various industries, and its global market is already valued at hundreds of billions of dollars per year. It is also playing additional roles as a clean alternative energy carrier for power generation and as a crucial feedstock in the bioeconomy. This Special Issue “Hydrogen Production Technologies” highlights different thermochemical, electrochemical, and biological technologies such as high- and low-temperature electrolyzers, microchannel reactors, sorption-enhanced reactors, multi-tubular solar reactors, and anaerobic digestors. It also covers other aspects ranging from reactor design, hydrogen storage, and process analysis of different alternatives.

Keywords

History of engineering & technology --- algae --- anaerobic digestion --- biogas --- biohydrogen --- energy assessment --- kinetic models --- microwave --- nanoparticles --- pretreatment --- solar reactor --- hydrogen production --- solar receiver --- thermal energy --- computational fluid dynamics --- CFD --- model --- titanium nitride --- stainless steel --- alkaline electrolysis --- energy storage --- hydrogen energy --- solid-state hydrogen storage --- unitized regenerative fuel cell --- multi- walled carbon nanotube --- proton battery --- pyrolytic oil hydro-processing --- process modeling --- syngas --- gasification --- sorption-enhanced water-gas shift --- multi-functional material --- hydrogen production processes --- economic viability --- environmental efficiency --- sustainable energy --- multi-criteria analysis --- thermochemical cycles --- micro-channel reactor --- ceria --- ceria-zirconia --- water splitting --- oxygen carrier --- solid oxide electrolysis cells --- sintering additive --- CuO --- steam electrolysis --- compact reactor --- ethanol steam reforming --- water gas shift --- algae --- anaerobic digestion --- biogas --- biohydrogen --- energy assessment --- kinetic models --- microwave --- nanoparticles --- pretreatment --- solar reactor --- hydrogen production --- solar receiver --- thermal energy --- computational fluid dynamics --- CFD --- model --- titanium nitride --- stainless steel --- alkaline electrolysis --- energy storage --- hydrogen energy --- solid-state hydrogen storage --- unitized regenerative fuel cell --- multi- walled carbon nanotube --- proton battery --- pyrolytic oil hydro-processing --- process modeling --- syngas --- gasification --- sorption-enhanced water-gas shift --- multi-functional material --- hydrogen production processes --- economic viability --- environmental efficiency --- sustainable energy --- multi-criteria analysis --- thermochemical cycles --- micro-channel reactor --- ceria --- ceria-zirconia --- water splitting --- oxygen carrier --- solid oxide electrolysis cells --- sintering additive --- CuO --- steam electrolysis --- compact reactor --- ethanol steam reforming --- water gas shift


Book
Biogas for Rural Areas
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bioenergy is renewable energy obtained from biomass—any organic material that has stored sunlight in the form of chemical energy. Biogas is among the biofuels that can be obtained from biomass resources, including biodegradable wastes like manure, sewage sludge, the organic fraction of municipal solid wastes, slaughterhouse waste, crop residues, and more recently lignocellulosic biomass and algae. Within the framework of the circular economy, biogas production from biodegradable waste is particularly interesting, as it helps to save resources while reducing environmental pollution. Besides, lignocellulosic biomass and algae do not compete for arable land with food crops (in contrast with energy crops). Hence, they constitute a novel source of biomass for bioenergy.Biogas plants may involve both high-tech and low-tech digesters, ranging from industrial-scale plants to small-scale farms and even households. They pose an alternative for decentralized bioenergy production in rural areas. Indeed, the biogas produced can be used in heaters, engines, combined heat and power units, and even cookstoves at the household level. Notwithstanding, digesters are considered to be a sustainable technology that can improve the living conditions of farmers by covering energy needs and boosting nutrient recycling. Thanks to their technical, socio-economic, and environmental benefits, rural biogas plants have been spreading around the world since the 1970s, with a large focus on farm-based systems and households. However, several challenges still need to be overcome in order to improve the technology and financial viability.

Keywords

Technology: general issues --- Environmental science, engineering & technology --- Mixing --- optimised --- household digester --- Chinese dome digester (CDD) --- self-agitation --- blank --- mixing --- Chinese dome digester --- impeller mixed digester --- unstirred digester --- hydraulically mixed --- total solids (TS) concentration --- plug-flow reactor --- anaerobic digestion --- animal manures --- biogas --- unconfined gas injection mixing --- mixing recirculation --- biomethane potential tests --- Italy --- manure --- energy crops --- agriculture residues --- digestate --- biochemical methane potential --- micro-aeration --- iron --- bioenergy --- H2S scrubber --- methane --- fermentation --- dairy --- poultry --- absorbent --- ammonia --- inhibition --- acclimatization --- trace elements --- anaerobic treatment --- energy assessment --- rural sanitation --- sludge --- wastewater --- agricultural runoff --- biomethane --- biorefinery --- microalgae --- photobioreactor --- pretreatment --- low cost digester --- psychrophilic anaerobic digestion --- thermal behavior --- anaerobic co-digestion --- slaughterhouse wastewater --- synergistic effects --- kinetic modeling --- biodegradability --- Mixing --- optimised --- household digester --- Chinese dome digester (CDD) --- self-agitation --- blank --- mixing --- Chinese dome digester --- impeller mixed digester --- unstirred digester --- hydraulically mixed --- total solids (TS) concentration --- plug-flow reactor --- anaerobic digestion --- animal manures --- biogas --- unconfined gas injection mixing --- mixing recirculation --- biomethane potential tests --- Italy --- manure --- energy crops --- agriculture residues --- digestate --- biochemical methane potential --- micro-aeration --- iron --- bioenergy --- H2S scrubber --- methane --- fermentation --- dairy --- poultry --- absorbent --- ammonia --- inhibition --- acclimatization --- trace elements --- anaerobic treatment --- energy assessment --- rural sanitation --- sludge --- wastewater --- agricultural runoff --- biomethane --- biorefinery --- microalgae --- photobioreactor --- pretreatment --- low cost digester --- psychrophilic anaerobic digestion --- thermal behavior --- anaerobic co-digestion --- slaughterhouse wastewater --- synergistic effects --- kinetic modeling --- biodegradability


Book
Alternative energy sources
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The search for alternative sources of energy is an attempt to solve two of the main problems facing the modern world. Today's resources are mainly based on fossil flammable substances such as coal, oil, and natural gas. The first problem is related to the expected and observed depletion of deposits, not only those available but also less accessible. Another is related to global warming from emissions of greenhouse gases (mainly carbon dioxide) as well as emissions of other pollutants in the atmosphere. Mitigating the harmful effects of fossil fuel use is an obvious challenge for mankind. This Special Issue includes articles on the search for new raw materials and new technologies for obtaining energy, such as those existing in nature, methane hydrates, biomass, etc., new more efficient technologies for generating electricity, as well as analyses of the possibilities and conditions of use of these resources for practical applications.


Book
Hydrogen Production Technologies
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hydrogen has been an important feedstock for various industries, and its global market is already valued at hundreds of billions of dollars per year. It is also playing additional roles as a clean alternative energy carrier for power generation and as a crucial feedstock in the bioeconomy. This Special Issue “Hydrogen Production Technologies” highlights different thermochemical, electrochemical, and biological technologies such as high- and low-temperature electrolyzers, microchannel reactors, sorption-enhanced reactors, multi-tubular solar reactors, and anaerobic digestors. It also covers other aspects ranging from reactor design, hydrogen storage, and process analysis of different alternatives.


Book
Alternative energy sources
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The search for alternative sources of energy is an attempt to solve two of the main problems facing the modern world. Today's resources are mainly based on fossil flammable substances such as coal, oil, and natural gas. The first problem is related to the expected and observed depletion of deposits, not only those available but also less accessible. Another is related to global warming from emissions of greenhouse gases (mainly carbon dioxide) as well as emissions of other pollutants in the atmosphere. Mitigating the harmful effects of fossil fuel use is an obvious challenge for mankind. This Special Issue includes articles on the search for new raw materials and new technologies for obtaining energy, such as those existing in nature, methane hydrates, biomass, etc., new more efficient technologies for generating electricity, as well as analyses of the possibilities and conditions of use of these resources for practical applications.


Book
Alternative energy sources
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The search for alternative sources of energy is an attempt to solve two of the main problems facing the modern world. Today's resources are mainly based on fossil flammable substances such as coal, oil, and natural gas. The first problem is related to the expected and observed depletion of deposits, not only those available but also less accessible. Another is related to global warming from emissions of greenhouse gases (mainly carbon dioxide) as well as emissions of other pollutants in the atmosphere. Mitigating the harmful effects of fossil fuel use is an obvious challenge for mankind. This Special Issue includes articles on the search for new raw materials and new technologies for obtaining energy, such as those existing in nature, methane hydrates, biomass, etc., new more efficient technologies for generating electricity, as well as analyses of the possibilities and conditions of use of these resources for practical applications.

Listing 1 - 10 of 10
Sort by