Listing 1 - 5 of 5 |
Sort by
|
Choose an application
The body weight gain, and food and water intake of the rats were measured. During weeks 3 or 4, home cage behaviour, urinary cortiosterone/ creatinine ratios (CO/CR), and muscle strength on an inclined plane, were measured. Enzyme activities and glycogen content were measured in tissue samples from m. triceps brachii taken after euthanization at the end of the study. There were no significant differences between groups for food and water intake, but PH rats weighed 14% less than SI rats after 4 weeks, and PH rats also had a more diverse behavioural pattern than SI rats. PH rats had significantly higher oxidative capacity (28% more citrate synthase (CS)) and greater glycogen content (28%) in their muscle samples than SI rats. The PH rats performed significantly better on the inclined plane, both in the muscle strength test (mean angle 75 +/- 0.5degrees for PH rats and 69 +/- 0.4degrees for SI rats) and the endurance strength test (mean time 233 +/- 22 s for PH rats and 73 +/- 14 s for SI rats). There was a negative correlation between body weight and results on the inclined plane for the PH rats. There were no significant differences between housing types with respect to CO/CR ratios. In conclusion, the large pen represents an environment that stimulates physical activity and more varied behaviour, which should be beneficial for the welfare of the animal The cage systems commonly used for housing laboratory rats often result in sedentary and overweight animals, as a consequence of restricted opportunities for physical activity combined with ad libitum feeding. This can have implications both for animal well-being and for the experimental outcome. Physical activity has several known positive effects on health and lifespan, and physical fitness might therefore be incorporated into the animal welfare concept. The aim of this study was to investigate if and how pen housing affects the physical activity and fitness of rats. Thirty-two juvenile male Sprague-Dawley rats were randomly assigned to two different housing systems for a 4-week period. Sixteen rats were kept individually in standard Makrolon type III cages (42 X 26 X 18 cm) furnished with black plastic tubes (singly-housed, SI). The remaining rats were kept in groups of eight, housed in large floor pens (150 X 210 cm), which were furnished with various objects to increase environmental complexity (pen-housed, PH).
Activity. --- Ad-libitum. --- Animal welfare. --- Animal-welfare. --- Animal. --- Animals. --- Behaviour. --- Body weight. --- Body-weight. --- Cage. --- Cages. --- Corticosterone levels. --- Corticosterone. --- Cs. --- Depression. --- Endurance exercise. --- Endurance. --- Enrichment. --- Environment. --- Environmental enrichment. --- Enzyme-activities. --- Feeding. --- Female rats. --- Fiber types. --- Floor. --- Food. --- Glycogen. --- Group. --- Health. --- Housing system. --- Housing type. --- Housing. --- Increase. --- Kept. --- Laboratory animals. --- Laboratory rat. --- Laboratory rats. --- Laboratory. --- Level. --- Male. --- Muscle enzyme activity. --- Object. --- Objects. --- Pattern. --- Pen. --- Performance. --- Ph. --- Physical activity. --- Physical-activity. --- Physical. --- Rat. --- Rats. --- Resistance. --- Skeletal-muscle. --- Sprague-dawley rats. --- Sprague-dawley. --- Strength. --- System. --- Systems. --- Test. --- Time. --- Vascular adaptations. --- Weight gain. --- Weight. --- Welfare. --- Well-being.
Choose an application
Very few materials have attracted so much attention in recent years, both from researchers and industry, as layered double hydroxides (LDHs) have. LDHs, which are also referred to as anionic clays or hydrotalcites, are a wide class of inorganic ionic lamellar clay materials consisting of alternately stacked positively charged metal hydroxide layers with intercalated charge-balancing anions in hydrated interlayer regions. Their unique properties, such as their extremely high versatility in chemical composition and intercalation ability, extraordinary tuneability in composition as well as morphology, good biocompatibility and high anion exchangeability, have triggered immense interdisciplinary interest for their use in many different fields of chemistry, biology, medicine, and physics. Indeed, the applications of LDHs are constantly growing: LDHs, in the form of aggregated lamellar clusters, exfoliated single-layer nanosheets, or hierarchical films of interconnected nanoplatelets, can be effectively used as nanoscale vehicles in drug delivery, heterogeneous catalysts and supports for molecular catalysts, ion exchangers and adsorbents, solid electrolytes or fillers in electrochemistry, for the fabrication of superhydrophobic surfaces, water treatment and purification, and the synthesis of functional thin films. This book gathers the contributions to the Special Issue “Layered Double Hydroxides” of Crystals, which includes two review articles and seven research papers.
Research & information: general --- layered double hydroxide --- memory effect --- rare earth --- europium --- 1,3,5-benzenetricarboxylic acid --- alginate beads --- green sorbent --- selective adsorption --- heavy metals --- tetracycline --- metal hydroxides --- layered double hydroxides --- removal --- water sample --- Bacillus subtilis --- surfactin --- quantitative analysis --- fermentation --- growth phase --- cellular biology --- catalysis --- DNA --- drug delivery --- hydrotalcite --- osteogenesis --- photocatalysis --- RNA. --- antimonate uptake --- mine water --- brandholzite --- zincalstibite --- iron precursor --- acidic residual solution --- LDH synthesis --- Mo(VI) adsorption --- resveratrol --- solid lipid nanoparticles --- endurance exercise --- mitochondrial nutrients --- mitochondrial quality control --- origin of life --- layer double hydroxide --- synthetic biology --- bioinspired devices --- biosensors --- bioanalysis --- n/a
Choose an application
Very few materials have attracted so much attention in recent years, both from researchers and industry, as layered double hydroxides (LDHs) have. LDHs, which are also referred to as anionic clays or hydrotalcites, are a wide class of inorganic ionic lamellar clay materials consisting of alternately stacked positively charged metal hydroxide layers with intercalated charge-balancing anions in hydrated interlayer regions. Their unique properties, such as their extremely high versatility in chemical composition and intercalation ability, extraordinary tuneability in composition as well as morphology, good biocompatibility and high anion exchangeability, have triggered immense interdisciplinary interest for their use in many different fields of chemistry, biology, medicine, and physics. Indeed, the applications of LDHs are constantly growing: LDHs, in the form of aggregated lamellar clusters, exfoliated single-layer nanosheets, or hierarchical films of interconnected nanoplatelets, can be effectively used as nanoscale vehicles in drug delivery, heterogeneous catalysts and supports for molecular catalysts, ion exchangers and adsorbents, solid electrolytes or fillers in electrochemistry, for the fabrication of superhydrophobic surfaces, water treatment and purification, and the synthesis of functional thin films. This book gathers the contributions to the Special Issue “Layered Double Hydroxides” of Crystals, which includes two review articles and seven research papers.
layered double hydroxide --- memory effect --- rare earth --- europium --- 1,3,5-benzenetricarboxylic acid --- alginate beads --- green sorbent --- selective adsorption --- heavy metals --- tetracycline --- metal hydroxides --- layered double hydroxides --- removal --- water sample --- Bacillus subtilis --- surfactin --- quantitative analysis --- fermentation --- growth phase --- cellular biology --- catalysis --- DNA --- drug delivery --- hydrotalcite --- osteogenesis --- photocatalysis --- RNA. --- antimonate uptake --- mine water --- brandholzite --- zincalstibite --- iron precursor --- acidic residual solution --- LDH synthesis --- Mo(VI) adsorption --- resveratrol --- solid lipid nanoparticles --- endurance exercise --- mitochondrial nutrients --- mitochondrial quality control --- origin of life --- layer double hydroxide --- synthetic biology --- bioinspired devices --- biosensors --- bioanalysis --- n/a
Choose an application
Very few materials have attracted so much attention in recent years, both from researchers and industry, as layered double hydroxides (LDHs) have. LDHs, which are also referred to as anionic clays or hydrotalcites, are a wide class of inorganic ionic lamellar clay materials consisting of alternately stacked positively charged metal hydroxide layers with intercalated charge-balancing anions in hydrated interlayer regions. Their unique properties, such as their extremely high versatility in chemical composition and intercalation ability, extraordinary tuneability in composition as well as morphology, good biocompatibility and high anion exchangeability, have triggered immense interdisciplinary interest for their use in many different fields of chemistry, biology, medicine, and physics. Indeed, the applications of LDHs are constantly growing: LDHs, in the form of aggregated lamellar clusters, exfoliated single-layer nanosheets, or hierarchical films of interconnected nanoplatelets, can be effectively used as nanoscale vehicles in drug delivery, heterogeneous catalysts and supports for molecular catalysts, ion exchangers and adsorbents, solid electrolytes or fillers in electrochemistry, for the fabrication of superhydrophobic surfaces, water treatment and purification, and the synthesis of functional thin films. This book gathers the contributions to the Special Issue “Layered Double Hydroxides” of Crystals, which includes two review articles and seven research papers.
Research & information: general --- layered double hydroxide --- memory effect --- rare earth --- europium --- 1,3,5-benzenetricarboxylic acid --- alginate beads --- green sorbent --- selective adsorption --- heavy metals --- tetracycline --- metal hydroxides --- layered double hydroxides --- removal --- water sample --- Bacillus subtilis --- surfactin --- quantitative analysis --- fermentation --- growth phase --- cellular biology --- catalysis --- DNA --- drug delivery --- hydrotalcite --- osteogenesis --- photocatalysis --- RNA. --- antimonate uptake --- mine water --- brandholzite --- zincalstibite --- iron precursor --- acidic residual solution --- LDH synthesis --- Mo(VI) adsorption --- resveratrol --- solid lipid nanoparticles --- endurance exercise --- mitochondrial nutrients --- mitochondrial quality control --- origin of life --- layer double hydroxide --- synthetic biology --- bioinspired devices --- biosensors --- bioanalysis --- layered double hydroxide --- memory effect --- rare earth --- europium --- 1,3,5-benzenetricarboxylic acid --- alginate beads --- green sorbent --- selective adsorption --- heavy metals --- tetracycline --- metal hydroxides --- layered double hydroxides --- removal --- water sample --- Bacillus subtilis --- surfactin --- quantitative analysis --- fermentation --- growth phase --- cellular biology --- catalysis --- DNA --- drug delivery --- hydrotalcite --- osteogenesis --- photocatalysis --- RNA. --- antimonate uptake --- mine water --- brandholzite --- zincalstibite --- iron precursor --- acidic residual solution --- LDH synthesis --- Mo(VI) adsorption --- resveratrol --- solid lipid nanoparticles --- endurance exercise --- mitochondrial nutrients --- mitochondrial quality control --- origin of life --- layer double hydroxide --- synthetic biology --- bioinspired devices --- biosensors --- bioanalysis
Choose an application
As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing.
n/a --- sport games --- compensatory eating --- breath test --- exercise-induced anorexia --- Fitbit --- nutrition education --- senescence --- body weight --- sport nutrition --- fitness --- long-term follow-up --- self-efficacy --- protein --- food consumption --- cytokines --- physical exercise --- cardiometabolic health --- mediation analyses --- obesity --- food choice --- telomere length --- sporting events --- carbohydrates --- free radicals --- marathon --- adolescents --- movement skills --- naturally enriched 13C-milk proteins --- behavioral intervention --- acute exercise --- skeletal muscle damage --- Protein --- TERRA --- nutrition --- telemonitoring --- Latino --- adolescent --- macronutrients --- metabolism --- mechanisms of impact --- anabolic competence --- endurance exercise --- food healthiness --- exercise --- health promotion --- behavioral economics --- immunity --- stunting --- lifestyle intervention --- running --- telomerase --- dietary intake --- inflammation --- vegetarian --- recreational athlete --- physical performance --- out-of-home eating --- diet --- overweight --- dietary restriction --- soccer --- dual burden of malnutrition --- protein shake --- childhood memories --- chronic diseases --- music events --- oxidation --- added sugar --- lifestyle change --- vegan --- nudges --- food --- physical activity --- half-marathon --- health conscious --- free or reduced lunch --- low-income --- diet quality --- National School Lunch Program --- older adults --- aging --- sport spectators --- chronic low-grade systemic inflammation --- sport --- food intake
Listing 1 - 5 of 5 |
Sort by
|