Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The bioeconomy initially focused on resource substitution, including the production of biomass from various resources; its conversion, fractionation, and processing by means of biotechnology; and chemistry and process engineering towards the production and marketing of food, feed, fuel, and fibre. Nevertheless, although resource substitution is still considered important, the emphasis has been recently shifted to the biotechnological innovation perspective of the bioeconomy, in terms that ensure environmental sustainability. It is estimated that around one-third of the food produced for human consumption is wasted throughout the world, posing not only a sustainability problem related to food security but also a significant environmental problem. Food waste streams, mainly derived from fruits and vegetables, cereals, oilseeds, meat, dairy, and fish processing, have unavoidably attracted the interest of the scientific community as an abundant reservoir of complex carbohydrates, proteins, lipids, and functional compounds, which can be utilized as raw materials for added-value product formulations. This Special Issue focuses on innovative and emerging food and by-products processing methods for the sustainable transition to a bioeconomy era.
ash content --- sorghum milling waste --- lipids --- compost --- oleic acid --- microbial oil --- bioprocess development --- glucoamylase --- fatty acid methyl esters --- oleaginous yeast --- integrated biorefineries --- biorefineries --- hydrophobic substrates --- food processing --- hydrophilicity --- biodiesel --- films --- biodegradability --- clarified butter sediment waste --- submerged fungal fermentation --- blood plasma protein powder --- Morchella --- hydrogels --- heat-induced gelation --- sustainability --- bacterial cellulose --- bioprocesses --- circular economy --- olive waste --- prebiotics --- Rhodosporidium toruloides --- carotenoids --- waste valorization --- glucosamine --- food-processing --- size exclusion chromatography (SEC) --- bioeconomy --- food waste valorization --- whey proteins --- arabinoxylan --- Ostwald ripening --- emulsion --- emulsifier --- food biotechnology --- drying method --- polysaccharides --- food packaging --- texture --- lactose esters --- morel mushrooms --- circular-economy --- solid state fermentation --- bioactive compounds --- edible films --- hydrolysis --- Aspergillus awamori
Choose an application
For many years, the trend of increasing energy demand has been visible. Despite the search for alternative energy sources, it is estimated that oil and natural gas will be the main source of energy in transport for the next several dozen years. However, the reserves of renewable raw materials are limited in volume. Along with the degree of depletion, oil recovery becomes more and more difficult, even though the deposits are not yet completely empty. Therefore, it is essential to find new methods to increase oil and gas recovery. Actions aimed at intensifying oil recovery are very rational use of energy that has not yet been fully used. Usually, an increase in oil recovery can be achieved by using extraction intensification methods. However, measures to increase oil recovery can be implemented and carried out at any stage of the borehole implementation. Starting from the well design stage, through drilling and ending with the exploitation of oil and gas. Therefore, in order to further disseminate technologies and methods related to increasing oil recovery, a special edition has been developed, entitled "Fundamentals of Enhanced Oil Recovery". This Special Issue mainly covers original research and studies on the above-mentioned topics, including, but not limited to, improving the efficiency of oil recovery, improving the correct selection of drilling fluids, secondary methods of intensifying production and appropriate energy management in the oil industry.
Technology: general issues --- History of engineering & technology --- gas migration --- well cementing --- cement slurry --- cement sheath --- corrosion resistance --- gas outflows --- oil-based mud --- invert drilling fluid --- water phase --- oil phase --- emulsion stability --- emulsifier --- drilling mud --- oxidants --- enzymes --- filter cake --- improving the sealing of the borehole --- rational selection of drilling fluids --- cleaning the borehole --- adhesion --- spacer fluid --- CO2 and H2S geological sequestration --- acid gas reinjection --- acid gas migration --- bottomhole sampling --- isotopic composition --- gas and water chemical analysis --- soil gas analysis --- leakage risk analysis --- improved borehole sealing --- nanosilica --- cement stone --- mechanical parameters --- drilling fluids --- wash --- mud cake --- annular space --- borehole cleaning --- cementing --- wash contact time --- high temperature on corrosion of mining pipes --- water --- aggressive natural gas components --- L80-1 steel --- water shut-off treatment --- gas production --- water-gas ratio (WGR) --- formation permeability --- well logging data quality and quantity interpretation --- gas well ranking --- water flooding --- pore scale --- enhanced oil recovery --- viscosity --- capillarity --- jet pump --- oil --- well --- sucker-rod pump --- gas-water-oil mixture --- chrome coating --- unconventional resources --- shale gas --- oil gas --- total organic carbon (TOC) --- cluster analysis --- genetic type of kerogen --- WAG --- carbonate reservoir --- CO2 --- acid gas --- high-nitrogen natural gas --- water alternating gas --- EOR --- recovery factor --- genetic programming --- fine-grained material --- borehole sealing efficiency --- technological parameters --- gas migration --- well cementing --- cement slurry --- cement sheath --- corrosion resistance --- gas outflows --- oil-based mud --- invert drilling fluid --- water phase --- oil phase --- emulsion stability --- emulsifier --- drilling mud --- oxidants --- enzymes --- filter cake --- improving the sealing of the borehole --- rational selection of drilling fluids --- cleaning the borehole --- adhesion --- spacer fluid --- CO2 and H2S geological sequestration --- acid gas reinjection --- acid gas migration --- bottomhole sampling --- isotopic composition --- gas and water chemical analysis --- soil gas analysis --- leakage risk analysis --- improved borehole sealing --- nanosilica --- cement stone --- mechanical parameters --- drilling fluids --- wash --- mud cake --- annular space --- borehole cleaning --- cementing --- wash contact time --- high temperature on corrosion of mining pipes --- water --- aggressive natural gas components --- L80-1 steel --- water shut-off treatment --- gas production --- water-gas ratio (WGR) --- formation permeability --- well logging data quality and quantity interpretation --- gas well ranking --- water flooding --- pore scale --- enhanced oil recovery --- viscosity --- capillarity --- jet pump --- oil --- well --- sucker-rod pump --- gas-water-oil mixture --- chrome coating --- unconventional resources --- shale gas --- oil gas --- total organic carbon (TOC) --- cluster analysis --- genetic type of kerogen --- WAG --- carbonate reservoir --- CO2 --- acid gas --- high-nitrogen natural gas --- water alternating gas --- EOR --- recovery factor --- genetic programming --- fine-grained material --- borehole sealing efficiency --- technological parameters
Choose an application
For many years, the trend of increasing energy demand has been visible. Despite the search for alternative energy sources, it is estimated that oil and natural gas will be the main source of energy in transport for the next several dozen years. However, the reserves of renewable raw materials are limited in volume. Along with the degree of depletion, oil recovery becomes more and more difficult, even though the deposits are not yet completely empty. Therefore, it is essential to find new methods to increase oil and gas recovery. Actions aimed at intensifying oil recovery are very rational use of energy that has not yet been fully used. Usually, an increase in oil recovery can be achieved by using extraction intensification methods. However, measures to increase oil recovery can be implemented and carried out at any stage of the borehole implementation. Starting from the well design stage, through drilling and ending with the exploitation of oil and gas. Therefore, in order to further disseminate technologies and methods related to increasing oil recovery, a special edition has been developed, entitled "Fundamentals of Enhanced Oil Recovery". This Special Issue mainly covers original research and studies on the above-mentioned topics, including, but not limited to, improving the efficiency of oil recovery, improving the correct selection of drilling fluids, secondary methods of intensifying production and appropriate energy management in the oil industry.
Technology: general issues --- History of engineering & technology --- gas migration --- well cementing --- cement slurry --- cement sheath --- corrosion resistance --- gas outflows --- oil-based mud --- invert drilling fluid --- water phase --- oil phase --- emulsion stability --- emulsifier --- drilling mud --- oxidants --- enzymes --- filter cake --- improving the sealing of the borehole --- rational selection of drilling fluids --- cleaning the borehole --- adhesion --- spacer fluid --- CO2 and H2S geological sequestration --- acid gas reinjection --- acid gas migration --- bottomhole sampling --- isotopic composition --- gas and water chemical analysis --- soil gas analysis --- leakage risk analysis --- improved borehole sealing --- nanosilica --- cement stone --- mechanical parameters --- drilling fluids --- wash --- mud cake --- annular space --- borehole cleaning --- cementing --- wash contact time --- high temperature on corrosion of mining pipes --- water --- aggressive natural gas components --- L80-1 steel --- water shut-off treatment --- gas production --- water-gas ratio (WGR) --- formation permeability --- well logging data quality and quantity interpretation --- gas well ranking --- water flooding --- pore scale --- enhanced oil recovery --- viscosity --- capillarity --- jet pump --- oil --- well --- sucker-rod pump --- gas-water-oil mixture --- chrome coating --- unconventional resources --- shale gas --- oil gas --- total organic carbon (TOC) --- cluster analysis --- genetic type of kerogen --- WAG --- carbonate reservoir --- CO2 --- acid gas --- high-nitrogen natural gas --- water alternating gas --- EOR --- recovery factor --- genetic programming --- fine-grained material --- borehole sealing efficiency --- technological parameters --- n/a
Choose an application
For many years, the trend of increasing energy demand has been visible. Despite the search for alternative energy sources, it is estimated that oil and natural gas will be the main source of energy in transport for the next several dozen years. However, the reserves of renewable raw materials are limited in volume. Along with the degree of depletion, oil recovery becomes more and more difficult, even though the deposits are not yet completely empty. Therefore, it is essential to find new methods to increase oil and gas recovery. Actions aimed at intensifying oil recovery are very rational use of energy that has not yet been fully used. Usually, an increase in oil recovery can be achieved by using extraction intensification methods. However, measures to increase oil recovery can be implemented and carried out at any stage of the borehole implementation. Starting from the well design stage, through drilling and ending with the exploitation of oil and gas. Therefore, in order to further disseminate technologies and methods related to increasing oil recovery, a special edition has been developed, entitled "Fundamentals of Enhanced Oil Recovery". This Special Issue mainly covers original research and studies on the above-mentioned topics, including, but not limited to, improving the efficiency of oil recovery, improving the correct selection of drilling fluids, secondary methods of intensifying production and appropriate energy management in the oil industry.
gas migration --- well cementing --- cement slurry --- cement sheath --- corrosion resistance --- gas outflows --- oil-based mud --- invert drilling fluid --- water phase --- oil phase --- emulsion stability --- emulsifier --- drilling mud --- oxidants --- enzymes --- filter cake --- improving the sealing of the borehole --- rational selection of drilling fluids --- cleaning the borehole --- adhesion --- spacer fluid --- CO2 and H2S geological sequestration --- acid gas reinjection --- acid gas migration --- bottomhole sampling --- isotopic composition --- gas and water chemical analysis --- soil gas analysis --- leakage risk analysis --- improved borehole sealing --- nanosilica --- cement stone --- mechanical parameters --- drilling fluids --- wash --- mud cake --- annular space --- borehole cleaning --- cementing --- wash contact time --- high temperature on corrosion of mining pipes --- water --- aggressive natural gas components --- L80-1 steel --- water shut-off treatment --- gas production --- water-gas ratio (WGR) --- formation permeability --- well logging data quality and quantity interpretation --- gas well ranking --- water flooding --- pore scale --- enhanced oil recovery --- viscosity --- capillarity --- jet pump --- oil --- well --- sucker-rod pump --- gas-water-oil mixture --- chrome coating --- unconventional resources --- shale gas --- oil gas --- total organic carbon (TOC) --- cluster analysis --- genetic type of kerogen --- WAG --- carbonate reservoir --- CO2 --- acid gas --- high-nitrogen natural gas --- water alternating gas --- EOR --- recovery factor --- genetic programming --- fine-grained material --- borehole sealing efficiency --- technological parameters --- n/a
Listing 1 - 4 of 4 |
Sort by
|