Narrow your search
Listing 1 - 7 of 7
Sort by
Use of waste materials in hot-mix asphalt
Author:
ISBN: 0803118813 Year: 1993 Publisher: Philadelphia, PA ASTM


Book
Nano-Modified Asphalt Binders and Mixtures to Enhance Pavement Performance
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is dedicated to the use of nanomaterials for the modification of asphalt binders, and to investigate whether or not the use of nanomaterials for asphalt mixtures fabrication achieves more effective asphalt pavement layers. A total of 10 contributions are included. Four are related to “Binder’s modification” and five to “Asphalt mixtures’ modification”. The remaining contribution is a review of the effects of the modifications on nanomaterials, particularly nanosilica, nanoclays and nanoiron, on the performance of asphalt mixtures. The published group of papers fosters awareness about the use of nanomaterials to modify asphalt mixtures to obtain more performant and durable flexible road pavements.


Book
Nano-Modified Asphalt Binders and Mixtures to Enhance Pavement Performance
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is dedicated to the use of nanomaterials for the modification of asphalt binders, and to investigate whether or not the use of nanomaterials for asphalt mixtures fabrication achieves more effective asphalt pavement layers. A total of 10 contributions are included. Four are related to “Binder’s modification” and five to “Asphalt mixtures’ modification”. The remaining contribution is a review of the effects of the modifications on nanomaterials, particularly nanosilica, nanoclays and nanoiron, on the performance of asphalt mixtures. The published group of papers fosters awareness about the use of nanomaterials to modify asphalt mixtures to obtain more performant and durable flexible road pavements.

Keywords

History of engineering & technology --- Graphene nano-platelets (GNPs) --- asphalt --- Scanning Electron Microscope (SEM) --- structural performance --- functional performance --- nanomaterials --- life cycle assessment --- nano-modified asphalt materials --- environmental impact --- spring-thaw season --- freeze-thaw cycle --- Nanomaterial modifier --- nano hydrophobic silane silica --- property improvement --- seasonally frozen region --- aggregate-bitumen interface --- bond strength --- nano titanium dioxide --- epoxy emulsified asphalt --- photocatalysis --- exhaust gas degradation --- modified asphalt mixtures --- polymers --- rheological behavior --- fatigue cracking --- permanent deformation --- modified bitumen --- nanosilica --- nanoclay --- nanoiron --- asphalt mixtures --- mechanical performance --- aging sensitivity --- ageing --- plastic film --- urban waste --- moisture --- indirect tensile strength --- graphene nanoplatelets (GNPs) --- EAF steel slag --- microwave heating --- self-healing --- Asphalt modification --- modifier chemistry --- long-term aging --- asphalt rheology --- phase angle --- delta Tc --- Graphene nano-platelets (GNPs) --- asphalt --- Scanning Electron Microscope (SEM) --- structural performance --- functional performance --- nanomaterials --- life cycle assessment --- nano-modified asphalt materials --- environmental impact --- spring-thaw season --- freeze-thaw cycle --- Nanomaterial modifier --- nano hydrophobic silane silica --- property improvement --- seasonally frozen region --- aggregate-bitumen interface --- bond strength --- nano titanium dioxide --- epoxy emulsified asphalt --- photocatalysis --- exhaust gas degradation --- modified asphalt mixtures --- polymers --- rheological behavior --- fatigue cracking --- permanent deformation --- modified bitumen --- nanosilica --- nanoclay --- nanoiron --- asphalt mixtures --- mechanical performance --- aging sensitivity --- ageing --- plastic film --- urban waste --- moisture --- indirect tensile strength --- graphene nanoplatelets (GNPs) --- EAF steel slag --- microwave heating --- self-healing --- Asphalt modification --- modifier chemistry --- long-term aging --- asphalt rheology --- phase angle --- delta Tc


Book
Nano-Modified Asphalt Binders and Mixtures to Enhance Pavement Performance
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is dedicated to the use of nanomaterials for the modification of asphalt binders, and to investigate whether or not the use of nanomaterials for asphalt mixtures fabrication achieves more effective asphalt pavement layers. A total of 10 contributions are included. Four are related to “Binder’s modification” and five to “Asphalt mixtures’ modification”. The remaining contribution is a review of the effects of the modifications on nanomaterials, particularly nanosilica, nanoclays and nanoiron, on the performance of asphalt mixtures. The published group of papers fosters awareness about the use of nanomaterials to modify asphalt mixtures to obtain more performant and durable flexible road pavements.


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210173 3039210165 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210130 3039210122 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210157 3039210149 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance

Listing 1 - 7 of 7
Sort by