Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
The book “Building Energy Audits-Diagnosis and Retrofitting” is a collection of twelve papers that focus on the built environment in order to systematically collect and analyze relevant data for the energy use profile of buildings and extended for the sustainability assessment of the built environment. The contributions address historic buildings, baselines for non-residential buildings from energy performance audits, and from in-situ measurements, monitoring, and analysis of data, and verification of energy saving and model calibration for various building types. The works report on how to diagnose existing problems and identify priorities, assess, and quantify the opportunities and measures that improve the overall building performance and the environmental quality and well-being of occupants in non-residential buildings and houses. Several case studies and lessons learned from the field are presented to help the readers identify, quantify, and prioritize effective energy conservation and efficiency measures. Finally, a new urban sustainability audit and rating method of the built environment addresses the complexities of the various issues involved, providing practical tools that can be adapted to match local priorities in order to diagnose and evaluate the current state and future scenarios towards meeting specific sustainable development goals and local priorities.
Research & information: general --- feature selection --- prediction of energy consumption --- electricity consumption --- machine learning --- non-residential buildings --- sustainability --- buildings --- neighbourhoods --- decision-making process --- key performance indicators --- KPIs --- built environment --- audit --- assessment tools --- brick 1 --- moisture 2 --- heat flow 3 --- energetic rehabilitation 4 --- non-destructive test 5 --- energy community (EC) --- renewable energy sources (RESs) --- citizen involvement --- co-ownership in renewable energies --- nonresidential buildings --- baselines --- EUI --- energy use intensities --- carbon emission intensities --- EPCs --- energy performance certificates --- building energy simulation --- school building --- field measurements --- validation --- airing --- windows and door opening --- occupancy behaviour --- energy efficiency measures --- retrofitting --- thermo-modernization --- final energy --- primary energy --- energy consumption --- home energy management system --- human comfort factor --- thermal comfort --- visual comfort --- demand response --- energy performance --- energy audits --- school buildings --- indoor climate --- HeLLo --- energy retrofit --- non-destructive test --- in situ --- hygrothermal measurement --- dynamic conditions --- hygrothermal simulation --- historic wall --- daylight --- lighting control --- lighting --- occupant preferences --- occupant satisfaction --- photosensor --- post-occupancy evaluation --- survey --- single-family houses --- embodied energy --- operational energy --- benchmarks --- renovations --- energy use intensity (EUI) --- embodied energy intensity (EEI) --- energy recovery time
Choose an application
The book “Building Energy Audits-Diagnosis and Retrofitting” is a collection of twelve papers that focus on the built environment in order to systematically collect and analyze relevant data for the energy use profile of buildings and extended for the sustainability assessment of the built environment. The contributions address historic buildings, baselines for non-residential buildings from energy performance audits, and from in-situ measurements, monitoring, and analysis of data, and verification of energy saving and model calibration for various building types. The works report on how to diagnose existing problems and identify priorities, assess, and quantify the opportunities and measures that improve the overall building performance and the environmental quality and well-being of occupants in non-residential buildings and houses. Several case studies and lessons learned from the field are presented to help the readers identify, quantify, and prioritize effective energy conservation and efficiency measures. Finally, a new urban sustainability audit and rating method of the built environment addresses the complexities of the various issues involved, providing practical tools that can be adapted to match local priorities in order to diagnose and evaluate the current state and future scenarios towards meeting specific sustainable development goals and local priorities.
feature selection --- prediction of energy consumption --- electricity consumption --- machine learning --- non-residential buildings --- sustainability --- buildings --- neighbourhoods --- decision-making process --- key performance indicators --- KPIs --- built environment --- audit --- assessment tools --- brick 1 --- moisture 2 --- heat flow 3 --- energetic rehabilitation 4 --- non-destructive test 5 --- energy community (EC) --- renewable energy sources (RESs) --- citizen involvement --- co-ownership in renewable energies --- nonresidential buildings --- baselines --- EUI --- energy use intensities --- carbon emission intensities --- EPCs --- energy performance certificates --- building energy simulation --- school building --- field measurements --- validation --- airing --- windows and door opening --- occupancy behaviour --- energy efficiency measures --- retrofitting --- thermo-modernization --- final energy --- primary energy --- energy consumption --- home energy management system --- human comfort factor --- thermal comfort --- visual comfort --- demand response --- energy performance --- energy audits --- school buildings --- indoor climate --- HeLLo --- energy retrofit --- non-destructive test --- in situ --- hygrothermal measurement --- dynamic conditions --- hygrothermal simulation --- historic wall --- daylight --- lighting control --- lighting --- occupant preferences --- occupant satisfaction --- photosensor --- post-occupancy evaluation --- survey --- single-family houses --- embodied energy --- operational energy --- benchmarks --- renovations --- energy use intensity (EUI) --- embodied energy intensity (EEI) --- energy recovery time
Choose an application
The book “Building Energy Audits-Diagnosis and Retrofitting” is a collection of twelve papers that focus on the built environment in order to systematically collect and analyze relevant data for the energy use profile of buildings and extended for the sustainability assessment of the built environment. The contributions address historic buildings, baselines for non-residential buildings from energy performance audits, and from in-situ measurements, monitoring, and analysis of data, and verification of energy saving and model calibration for various building types. The works report on how to diagnose existing problems and identify priorities, assess, and quantify the opportunities and measures that improve the overall building performance and the environmental quality and well-being of occupants in non-residential buildings and houses. Several case studies and lessons learned from the field are presented to help the readers identify, quantify, and prioritize effective energy conservation and efficiency measures. Finally, a new urban sustainability audit and rating method of the built environment addresses the complexities of the various issues involved, providing practical tools that can be adapted to match local priorities in order to diagnose and evaluate the current state and future scenarios towards meeting specific sustainable development goals and local priorities.
Research & information: general --- feature selection --- prediction of energy consumption --- electricity consumption --- machine learning --- non-residential buildings --- sustainability --- buildings --- neighbourhoods --- decision-making process --- key performance indicators --- KPIs --- built environment --- audit --- assessment tools --- brick 1 --- moisture 2 --- heat flow 3 --- energetic rehabilitation 4 --- non-destructive test 5 --- energy community (EC) --- renewable energy sources (RESs) --- citizen involvement --- co-ownership in renewable energies --- nonresidential buildings --- baselines --- EUI --- energy use intensities --- carbon emission intensities --- EPCs --- energy performance certificates --- building energy simulation --- school building --- field measurements --- validation --- airing --- windows and door opening --- occupancy behaviour --- energy efficiency measures --- retrofitting --- thermo-modernization --- final energy --- primary energy --- energy consumption --- home energy management system --- human comfort factor --- thermal comfort --- visual comfort --- demand response --- energy performance --- energy audits --- school buildings --- indoor climate --- HeLLo --- energy retrofit --- non-destructive test --- in situ --- hygrothermal measurement --- dynamic conditions --- hygrothermal simulation --- historic wall --- daylight --- lighting control --- lighting --- occupant preferences --- occupant satisfaction --- photosensor --- post-occupancy evaluation --- survey --- single-family houses --- embodied energy --- operational energy --- benchmarks --- renovations --- energy use intensity (EUI) --- embodied energy intensity (EEI) --- energy recovery time
Choose an application
Energy consumption and economic growth have been of great interest to researchers and policy-makers. Knowing the actual causal relationship between energy and the economy with respect to environmental degradation has important implications for modeling environmental and growth policies. The eleven chapters included herein aim to help researchers, academicians, and especially decision-makers to understand relevant issues and adopt appropriate methods to tackle and solve relevant environmental problems. Various methods from different disciplines are proposed and applied to various environmental and energy issues.
expected utility maximization --- decoupling theory --- urban utility tunnel --- sensitivity analysis --- environmental Kuznets curve (EKC) --- economic systems --- structural decomposition analysis --- thermodynamic cycles --- sustainable wind energy management --- environmental engineering --- energy commodities --- hedging strategies --- energy consumption --- industrialization --- energy --- waste --- Analytic Hierarchy Process --- panel data --- rank reversal --- economy --- industrial CO2 emission --- sustainability --- sustainable development --- energy-related carbon emissions --- Multi-Criteria Decision Analysis --- Shapley value --- Kaya identity --- circular economy --- minimum-variance hedge ratio --- MESSAGE model --- fixed assets investment --- life cycle cost --- Analytic Network Process --- environmental efficiency --- Pakistan --- data envelopment analysis --- embodied energy --- carbon emissions --- district distributed power plants --- economic benefit evaluation --- differential GMM estimation --- linearization --- effectiveness --- dynamic hybrid input–output model --- environment quality cointegration --- cost allocation --- risk aversion --- environment --- 3E --- financial development --- LMDI approach --- differential games --- energy recovery --- resource dependence theory --- open-loop control systems --- Tapio decoupling model --- uncertain dynamic systems
Choose an application
Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.
Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization
Choose an application
The transition towards renewable energy sources and “green” technologies for energy generation and storage is expected to mitigate the climate emergency in the coming years. However, in many cases, this progress has been hampered by our dependency on critical materials or other resources that are often processed at high environmental burdens. Yet, many studies have shown that environmental and energy issues are strictly interconnected and require a comprehensive understanding of resource management strategies and their implications. Life cycle assessment (LCA) is among the most inclusive analytical techniques to analyze sustainability benefits and trade-offs within complex systems and, in this Special Issue, it is applied to assess the mutual influences of environmental and energy dimensions. The selection of original articles, reviews, and case studies addressed covers some of the main driving applications for energy requirements and greenhouse gas emissions, including power generation, bioenergy, biorefinery, building, and transportation. An insightful perspective on the current topics and technologies, and emerging research needs, is provided. Alone or in combination with integrative methodologies, LCA can be of pivotal importance and constitute the scientific foundation on which a full system understanding can be reached.
Research & information: general --- life cycle assessment --- harmonization --- photovoltaic --- perovskite solar cell --- manufacturing process --- environmental impact --- greenhouse gas --- gasification --- swine manure management --- ground-source heat pumps --- space conditioning --- environmental sustainability --- life cycle assessment (LCA) --- phase-change material (PCM) --- CED --- Eco-indicator 99 --- IPCC --- LCA --- photovoltaics panels --- recycling --- landfill --- embodied energy --- embodied carbon --- life-cycle embodied performance --- metropolitan area --- in-city --- transport energy intensity --- well to wheel --- material structure --- photovoltaics --- waste management --- EROI --- net energy --- energy scenario --- energy transition --- electricity --- grid mix --- storage --- decarbonization --- biofuel policy --- GHG mitigation --- energy security --- indirect land use change --- carbon dioxide capture --- activated carbon --- environmental impacts --- Life Cycle Assessment (LCA) --- Material Flow Analysis (MFA) --- Criticality --- traction batteries --- forecast --- supply --- exergy --- sustainability --- review --- bioenergy --- geographic information system (GIS) --- harvesting residues --- energy metrics --- PHAs --- bio-based polymers --- biodegradable plastics --- pyrolysis --- volatile fatty acids --- phase change materials --- PCM --- thermal energy storage --- Storage LCA Tool --- Speicher LCA --- n/a
Choose an application
Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.
analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization
Choose an application
The transition towards renewable energy sources and “green” technologies for energy generation and storage is expected to mitigate the climate emergency in the coming years. However, in many cases, this progress has been hampered by our dependency on critical materials or other resources that are often processed at high environmental burdens. Yet, many studies have shown that environmental and energy issues are strictly interconnected and require a comprehensive understanding of resource management strategies and their implications. Life cycle assessment (LCA) is among the most inclusive analytical techniques to analyze sustainability benefits and trade-offs within complex systems and, in this Special Issue, it is applied to assess the mutual influences of environmental and energy dimensions. The selection of original articles, reviews, and case studies addressed covers some of the main driving applications for energy requirements and greenhouse gas emissions, including power generation, bioenergy, biorefinery, building, and transportation. An insightful perspective on the current topics and technologies, and emerging research needs, is provided. Alone or in combination with integrative methodologies, LCA can be of pivotal importance and constitute the scientific foundation on which a full system understanding can be reached.
life cycle assessment --- harmonization --- photovoltaic --- perovskite solar cell --- manufacturing process --- environmental impact --- greenhouse gas --- gasification --- swine manure management --- ground-source heat pumps --- space conditioning --- environmental sustainability --- life cycle assessment (LCA) --- phase-change material (PCM) --- CED --- Eco-indicator 99 --- IPCC --- LCA --- photovoltaics panels --- recycling --- landfill --- embodied energy --- embodied carbon --- life-cycle embodied performance --- metropolitan area --- in-city --- transport energy intensity --- well to wheel --- material structure --- photovoltaics --- waste management --- EROI --- net energy --- energy scenario --- energy transition --- electricity --- grid mix --- storage --- decarbonization --- biofuel policy --- GHG mitigation --- energy security --- indirect land use change --- carbon dioxide capture --- activated carbon --- environmental impacts --- Life Cycle Assessment (LCA) --- Material Flow Analysis (MFA) --- Criticality --- traction batteries --- forecast --- supply --- exergy --- sustainability --- review --- bioenergy --- geographic information system (GIS) --- harvesting residues --- energy metrics --- PHAs --- bio-based polymers --- biodegradable plastics --- pyrolysis --- volatile fatty acids --- phase change materials --- PCM --- thermal energy storage --- Storage LCA Tool --- Speicher LCA --- n/a
Choose an application
Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.
Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization
Choose an application
The transition towards renewable energy sources and “green” technologies for energy generation and storage is expected to mitigate the climate emergency in the coming years. However, in many cases, this progress has been hampered by our dependency on critical materials or other resources that are often processed at high environmental burdens. Yet, many studies have shown that environmental and energy issues are strictly interconnected and require a comprehensive understanding of resource management strategies and their implications. Life cycle assessment (LCA) is among the most inclusive analytical techniques to analyze sustainability benefits and trade-offs within complex systems and, in this Special Issue, it is applied to assess the mutual influences of environmental and energy dimensions. The selection of original articles, reviews, and case studies addressed covers some of the main driving applications for energy requirements and greenhouse gas emissions, including power generation, bioenergy, biorefinery, building, and transportation. An insightful perspective on the current topics and technologies, and emerging research needs, is provided. Alone or in combination with integrative methodologies, LCA can be of pivotal importance and constitute the scientific foundation on which a full system understanding can be reached.
Research & information: general --- life cycle assessment --- harmonization --- photovoltaic --- perovskite solar cell --- manufacturing process --- environmental impact --- greenhouse gas --- gasification --- swine manure management --- ground-source heat pumps --- space conditioning --- environmental sustainability --- life cycle assessment (LCA) --- phase-change material (PCM) --- CED --- Eco-indicator 99 --- IPCC --- LCA --- photovoltaics panels --- recycling --- landfill --- embodied energy --- embodied carbon --- life-cycle embodied performance --- metropolitan area --- in-city --- transport energy intensity --- well to wheel --- material structure --- photovoltaics --- waste management --- EROI --- net energy --- energy scenario --- energy transition --- electricity --- grid mix --- storage --- decarbonization --- biofuel policy --- GHG mitigation --- energy security --- indirect land use change --- carbon dioxide capture --- activated carbon --- environmental impacts --- Life Cycle Assessment (LCA) --- Material Flow Analysis (MFA) --- Criticality --- traction batteries --- forecast --- supply --- exergy --- sustainability --- review --- bioenergy --- geographic information system (GIS) --- harvesting residues --- energy metrics --- PHAs --- bio-based polymers --- biodegradable plastics --- pyrolysis --- volatile fatty acids --- phase change materials --- PCM --- thermal energy storage --- Storage LCA Tool --- Speicher LCA --- life cycle assessment --- harmonization --- photovoltaic --- perovskite solar cell --- manufacturing process --- environmental impact --- greenhouse gas --- gasification --- swine manure management --- ground-source heat pumps --- space conditioning --- environmental sustainability --- life cycle assessment (LCA) --- phase-change material (PCM) --- CED --- Eco-indicator 99 --- IPCC --- LCA --- photovoltaics panels --- recycling --- landfill --- embodied energy --- embodied carbon --- life-cycle embodied performance --- metropolitan area --- in-city --- transport energy intensity --- well to wheel --- material structure --- photovoltaics --- waste management --- EROI --- net energy --- energy scenario --- energy transition --- electricity --- grid mix --- storage --- decarbonization --- biofuel policy --- GHG mitigation --- energy security --- indirect land use change --- carbon dioxide capture --- activated carbon --- environmental impacts --- Life Cycle Assessment (LCA) --- Material Flow Analysis (MFA) --- Criticality --- traction batteries --- forecast --- supply --- exergy --- sustainability --- review --- bioenergy --- geographic information system (GIS) --- harvesting residues --- energy metrics --- PHAs --- bio-based polymers --- biodegradable plastics --- pyrolysis --- volatile fatty acids --- phase change materials --- PCM --- thermal energy storage --- Storage LCA Tool --- Speicher LCA
Listing 1 - 10 of 13 | << page >> |
Sort by
|