Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Wine aging is a desirable and valuable process, commonly used to improve wine quality, and traditionally carried out in oak wooden casks. The correct use of oak barrels and the ever-increasing demand for barrels in the different production areas of the world has led to a constant search for technological alternatives to reproduce the chemical and physical processes undergone by wines during their stay in barrels.The aim of this Special Issue is to publish a compilation of original research and revision works that cover different aspects of the ageing processes of wine in casks and other alternative systems that reproduce, with different technologies, the transformations that take place in the barrel.Important aspects to be addressed are:the type of technological solutions that exist for wine agingthe impact of these new technologies on the final productcomparison of the effect of emerging and traditional technologies on the wine ageddifferentiation of wines undergoing different systems to avoid fraudcharacterization of the new materials used in barrel productionaccelerated aging of wines with wood and oxygen
dissolved oxygen --- oak fragments --- red wine --- chips --- gold nanoparticles --- regeneration --- phenolic compounds --- wine aging --- sensorial characteristics --- alternative woods --- oak wood barrel --- sensory analysis --- sanitation --- MDGC-MS --- ellagitannins --- white wine --- high power ultrasound --- volatile compounds --- oak --- tridecane --- traditional oaks --- other woods --- different oaks --- oak barrels --- barrels --- Pinot noir --- brettanomyces --- triangular tasting --- Quercus pyrenaica --- must --- trans-2-decenal --- aging --- floating and fixed micro-oxygenation --- grapes --- low molecular phenols
Choose an application
Wine aging is a desirable and valuable process, commonly used to improve wine quality, and traditionally carried out in oak wooden casks. The correct use of oak barrels and the ever-increasing demand for barrels in the different production areas of the world has led to a constant search for technological alternatives to reproduce the chemical and physical processes undergone by wines during their stay in barrels.The aim of this Special Issue is to publish a compilation of original research and revision works that cover different aspects of the ageing processes of wine in casks and other alternative systems that reproduce, with different technologies, the transformations that take place in the barrel.Important aspects to be addressed are:the type of technological solutions that exist for wine agingthe impact of these new technologies on the final productcomparison of the effect of emerging and traditional technologies on the wine ageddifferentiation of wines undergoing different systems to avoid fraudcharacterization of the new materials used in barrel productionaccelerated aging of wines with wood and oxygen
dissolved oxygen --- oak fragments --- red wine --- chips --- gold nanoparticles --- regeneration --- phenolic compounds --- wine aging --- sensorial characteristics --- alternative woods --- oak wood barrel --- sensory analysis --- sanitation --- MDGC-MS --- ellagitannins --- white wine --- high power ultrasound --- volatile compounds --- oak --- tridecane --- traditional oaks --- other woods --- different oaks --- oak barrels --- barrels --- Pinot noir --- brettanomyces --- triangular tasting --- Quercus pyrenaica --- must --- trans-2-decenal --- aging --- floating and fixed micro-oxygenation --- grapes --- low molecular phenols
Choose an application
Wine aging is a desirable and valuable process, commonly used to improve wine quality, and traditionally carried out in oak wooden casks. The correct use of oak barrels and the ever-increasing demand for barrels in the different production areas of the world has led to a constant search for technological alternatives to reproduce the chemical and physical processes undergone by wines during their stay in barrels.The aim of this Special Issue is to publish a compilation of original research and revision works that cover different aspects of the ageing processes of wine in casks and other alternative systems that reproduce, with different technologies, the transformations that take place in the barrel.Important aspects to be addressed are:the type of technological solutions that exist for wine agingthe impact of these new technologies on the final productcomparison of the effect of emerging and traditional technologies on the wine ageddifferentiation of wines undergoing different systems to avoid fraudcharacterization of the new materials used in barrel productionaccelerated aging of wines with wood and oxygen
dissolved oxygen --- oak fragments --- red wine --- chips --- gold nanoparticles --- regeneration --- phenolic compounds --- wine aging --- sensorial characteristics --- alternative woods --- oak wood barrel --- sensory analysis --- sanitation --- MDGC-MS --- ellagitannins --- white wine --- high power ultrasound --- volatile compounds --- oak --- tridecane --- traditional oaks --- other woods --- different oaks --- oak barrels --- barrels --- Pinot noir --- brettanomyces --- triangular tasting --- Quercus pyrenaica --- must --- trans-2-decenal --- aging --- floating and fixed micro-oxygenation --- grapes --- low molecular phenols
Choose an application
Interest has grown regarding natural plant extracts in food and beverage applications, their vital role in the food industry, and their therapeutic use against diseases. The protective effects of healthy diets are partially due to the variety of plant metabolites, particularly phenolic compounds, which are considered the most important class of compounds that originates from plant-derived metabolites. Phenolics are well renowned for their possession of a wide array of remarkable biological properties. This Special Issue (SI) aims to gather the most recent contributions concerning their chemistry, extraction methods, and analytical techniques, applications, and biological activities. This Special Issue of Processes, entitled “Phenolic Compounds: Extraction, Optimization, Identification and Applications in Food Industry”, gathers the recent work of leading researchers in a single collection, covering a variety of theoretical studies and experimental applications and focusing on the extraction, identification, and industrial applications. The advances presented in the contributions in this SI have significantly helped to accomplish this target. In addition to research articles, the Special Issue features two reviews that cover a range of topics highlighting the versatility of the area. The topics covered in this SI include advanced methodologies for the isolation, purification, and analysis of phenolics from food, food waste, and medicinal plants; biological activities and mechanisms of action; health benefits from in vivo evaluation; and the development of novel phenolics-based nutraceuticals and functional ingredients.
flavonoids --- extraction methods --- biotransformation --- human health --- verjuice --- phytochemicals --- unripe grape juice --- pulmonary adenocarcinoma --- anti-proliferative --- antioxidant --- Dalbergia species --- DPPH free radical scavenging assay --- fatty acid --- phytosterol --- tocopherol --- total phenolic compound composition --- U/A-AE --- Nephelium lappaceum L. --- separation --- ellagitannins --- geraniin --- olive oil --- olive paste --- by-product --- industrial process --- phenolic compounds --- Moringa oleifera --- microencapsulation --- cell viability --- storage --- in vitro digestion --- polyphenols --- antioxidant activity --- Echinacea purpurea extracts --- glassy carbon electrode (GCE) --- carbon nanotubes (CNTs) --- SARS-CoV --- coronavirus --- traditional Chinese medicine --- COVID-19 --- natural products --- polyphenolic --- Phenol-Explorer --- I-Class --- Synapt G2-Si --- phenolomics --- pumpkin seed oil --- oleogels --- HPLC-MS --- Fourier transform infrared spectroscopy --- chemometrics --- storage follow-up --- potato peel --- ultrasound --- phenolic compound --- Cabernet Sauvignon concentrate --- reverse osmosis --- nanofiltration --- cellulose/raspberry encapsulates --- phenolics --- anthocyanins --- inhibition of α-amylase --- TWIMS --- phenol-explorer database --- UPLC-MS-MS --- bee pollen --- cinnamic acid derivatives --- food processing --- kaempferol glycosides --- luteolin --- quercetin glycosides --- tricetin --- n/a
Choose an application
Interest has grown regarding natural plant extracts in food and beverage applications, their vital role in the food industry, and their therapeutic use against diseases. The protective effects of healthy diets are partially due to the variety of plant metabolites, particularly phenolic compounds, which are considered the most important class of compounds that originates from plant-derived metabolites. Phenolics are well renowned for their possession of a wide array of remarkable biological properties. This Special Issue (SI) aims to gather the most recent contributions concerning their chemistry, extraction methods, and analytical techniques, applications, and biological activities. This Special Issue of Processes, entitled “Phenolic Compounds: Extraction, Optimization, Identification and Applications in Food Industry”, gathers the recent work of leading researchers in a single collection, covering a variety of theoretical studies and experimental applications and focusing on the extraction, identification, and industrial applications. The advances presented in the contributions in this SI have significantly helped to accomplish this target. In addition to research articles, the Special Issue features two reviews that cover a range of topics highlighting the versatility of the area. The topics covered in this SI include advanced methodologies for the isolation, purification, and analysis of phenolics from food, food waste, and medicinal plants; biological activities and mechanisms of action; health benefits from in vivo evaluation; and the development of novel phenolics-based nutraceuticals and functional ingredients.
Research & information: general --- Biology, life sciences --- Food & society --- flavonoids --- extraction methods --- biotransformation --- human health --- verjuice --- phytochemicals --- unripe grape juice --- pulmonary adenocarcinoma --- anti-proliferative --- antioxidant --- Dalbergia species --- DPPH free radical scavenging assay --- fatty acid --- phytosterol --- tocopherol --- total phenolic compound composition --- U/A-AE --- Nephelium lappaceum L. --- separation --- ellagitannins --- geraniin --- olive oil --- olive paste --- by-product --- industrial process --- phenolic compounds --- Moringa oleifera --- microencapsulation --- cell viability --- storage --- in vitro digestion --- polyphenols --- antioxidant activity --- Echinacea purpurea extracts --- glassy carbon electrode (GCE) --- carbon nanotubes (CNTs) --- SARS-CoV --- coronavirus --- traditional Chinese medicine --- COVID-19 --- natural products --- polyphenolic --- Phenol-Explorer --- I-Class --- Synapt G2-Si --- phenolomics --- pumpkin seed oil --- oleogels --- HPLC-MS --- Fourier transform infrared spectroscopy --- chemometrics --- storage follow-up --- potato peel --- ultrasound --- phenolic compound --- Cabernet Sauvignon concentrate --- reverse osmosis --- nanofiltration --- cellulose/raspberry encapsulates --- phenolics --- anthocyanins --- inhibition of α-amylase --- TWIMS --- phenol-explorer database --- UPLC-MS-MS --- bee pollen --- cinnamic acid derivatives --- food processing --- kaempferol glycosides --- luteolin --- quercetin glycosides --- tricetin
Choose an application
It is our pleasure to present this Special Issue of Pharmaceuticals, entitled “Applications of Liquid Chromatography in Analysis of Pharmaceuticals and Natural Products”. Plants produce a wide range of phytochemicals, which are secondary metabolites that confirm their identity and are used for the production of natural pharmaceuticals, among other things. The use of modern chromatographic techniques allows accurate quantitative and qualitative identification of the above-mentioned phytochemicals and their natural products. Liquid chromatography is one of the most efficient and robust specific techniques, due to the merits of convenience and strong separation ability, as well as a wide range of material applications for identification. Liquid chromatography is widely used for the analysis of plants, nutraceuticals, pharmaceuticals, natural product quality control, or quantitative determination of bioactive compounds. The most commonly used for the identification of different plant material and pharmaceuticals are the ultra- and high-performance liquid chromatography with UV-VIS, fluorescence, diode array, and equipped with mass spectrometry or tandem mass spectrometry detection methods. Therefore, for this Special Issue, we published works concerning the latest scientific news, insights, and advances in the field of innovation and applications of liquid chromatography in the analysis of phytochemicals and natural products.
Research & information: general --- Biology, life sciences --- Food & society --- in vitro biological activity --- bioactive compounds --- morphological parts --- medical plant --- Fragaria viridis --- creamy strawberry --- ellagitannins --- HPLC --- mass spectrometry --- fruit ripening --- antioxidant potential --- bisphenol A --- high-performance liquid chromatography --- ionic liquid --- dispersive liquid–liquid microextraction --- extraction kinetic studies --- tenofovir --- creatinine --- HPLC-UV --- hepatitis B virus --- human immunodeficiency virus --- anatoxin-a(s) --- neurotoxins --- cyanobacteria poisoning --- bio-accessibility --- isothiazolinones --- parabens --- cosmetics --- SPE --- UHPLC/DAD --- Gardenia jasminoides Ellis --- anti-diabetic activity --- LC-MS/MS --- GC-MS --- anti-oxidant --- Ficus glumosa --- polyphenols --- HPLC-ESI-MS/MS --- antiproliferative --- antioxidant --- Ayurveda --- Divya-Swasari-Vati --- herbal medicine --- UPLC/QToF MS --- validation --- Allium cepa L. --- Box–Behnken --- flavonoids --- quercetin glycosides --- liquid chromatography --- multiresponse optimization --- onion --- phenolic compounds --- UHPLC --- HPLC-MS/MS --- steroidal hormones --- anti-doping --- bovine blood --- equine blood --- natural products --- plant materials --- dietary supplements --- terpenes --- capillary liquid chromatography --- steroids --- skin permeability --- thin layer chromatography --- calculated physicochemical descriptors --- topical formulation --- anti-cellulite --- cosmetic --- monoterpenoids --- accelerated stability --- F0 concept --- steam sterilization --- sterilization safety --- glucose degradation products --- α-dicarbonyl compounds --- derivatization --- tandem mass spectrometry --- Geobacillus stearothermophilus --- paracetamol --- accuracy profile --- 3D printed --- formulation --- biorelevant media
Choose an application
It is our pleasure to present this Special Issue of Pharmaceuticals, entitled “Applications of Liquid Chromatography in Analysis of Pharmaceuticals and Natural Products”. Plants produce a wide range of phytochemicals, which are secondary metabolites that confirm their identity and are used for the production of natural pharmaceuticals, among other things. The use of modern chromatographic techniques allows accurate quantitative and qualitative identification of the above-mentioned phytochemicals and their natural products. Liquid chromatography is one of the most efficient and robust specific techniques, due to the merits of convenience and strong separation ability, as well as a wide range of material applications for identification. Liquid chromatography is widely used for the analysis of plants, nutraceuticals, pharmaceuticals, natural product quality control, or quantitative determination of bioactive compounds. The most commonly used for the identification of different plant material and pharmaceuticals are the ultra- and high-performance liquid chromatography with UV-VIS, fluorescence, diode array, and equipped with mass spectrometry or tandem mass spectrometry detection methods. Therefore, for this Special Issue, we published works concerning the latest scientific news, insights, and advances in the field of innovation and applications of liquid chromatography in the analysis of phytochemicals and natural products.
in vitro biological activity --- bioactive compounds --- morphological parts --- medical plant --- Fragaria viridis --- creamy strawberry --- ellagitannins --- HPLC --- mass spectrometry --- fruit ripening --- antioxidant potential --- bisphenol A --- high-performance liquid chromatography --- ionic liquid --- dispersive liquid–liquid microextraction --- extraction kinetic studies --- tenofovir --- creatinine --- HPLC-UV --- hepatitis B virus --- human immunodeficiency virus --- anatoxin-a(s) --- neurotoxins --- cyanobacteria poisoning --- bio-accessibility --- isothiazolinones --- parabens --- cosmetics --- SPE --- UHPLC/DAD --- Gardenia jasminoides Ellis --- anti-diabetic activity --- LC-MS/MS --- GC-MS --- anti-oxidant --- Ficus glumosa --- polyphenols --- HPLC-ESI-MS/MS --- antiproliferative --- antioxidant --- Ayurveda --- Divya-Swasari-Vati --- herbal medicine --- UPLC/QToF MS --- validation --- Allium cepa L. --- Box–Behnken --- flavonoids --- quercetin glycosides --- liquid chromatography --- multiresponse optimization --- onion --- phenolic compounds --- UHPLC --- HPLC-MS/MS --- steroidal hormones --- anti-doping --- bovine blood --- equine blood --- natural products --- plant materials --- dietary supplements --- terpenes --- capillary liquid chromatography --- steroids --- skin permeability --- thin layer chromatography --- calculated physicochemical descriptors --- topical formulation --- anti-cellulite --- cosmetic --- monoterpenoids --- accelerated stability --- F0 concept --- steam sterilization --- sterilization safety --- glucose degradation products --- α-dicarbonyl compounds --- derivatization --- tandem mass spectrometry --- Geobacillus stearothermophilus --- paracetamol --- accuracy profile --- 3D printed --- formulation --- biorelevant media
Choose an application
It is our pleasure to present this Special Issue of Pharmaceuticals, entitled “Applications of Liquid Chromatography in Analysis of Pharmaceuticals and Natural Products”. Plants produce a wide range of phytochemicals, which are secondary metabolites that confirm their identity and are used for the production of natural pharmaceuticals, among other things. The use of modern chromatographic techniques allows accurate quantitative and qualitative identification of the above-mentioned phytochemicals and their natural products. Liquid chromatography is one of the most efficient and robust specific techniques, due to the merits of convenience and strong separation ability, as well as a wide range of material applications for identification. Liquid chromatography is widely used for the analysis of plants, nutraceuticals, pharmaceuticals, natural product quality control, or quantitative determination of bioactive compounds. The most commonly used for the identification of different plant material and pharmaceuticals are the ultra- and high-performance liquid chromatography with UV-VIS, fluorescence, diode array, and equipped with mass spectrometry or tandem mass spectrometry detection methods. Therefore, for this Special Issue, we published works concerning the latest scientific news, insights, and advances in the field of innovation and applications of liquid chromatography in the analysis of phytochemicals and natural products.
Research & information: general --- Biology, life sciences --- Food & society --- in vitro biological activity --- bioactive compounds --- morphological parts --- medical plant --- Fragaria viridis --- creamy strawberry --- ellagitannins --- HPLC --- mass spectrometry --- fruit ripening --- antioxidant potential --- bisphenol A --- high-performance liquid chromatography --- ionic liquid --- dispersive liquid–liquid microextraction --- extraction kinetic studies --- tenofovir --- creatinine --- HPLC-UV --- hepatitis B virus --- human immunodeficiency virus --- anatoxin-a(s) --- neurotoxins --- cyanobacteria poisoning --- bio-accessibility --- isothiazolinones --- parabens --- cosmetics --- SPE --- UHPLC/DAD --- Gardenia jasminoides Ellis --- anti-diabetic activity --- LC-MS/MS --- GC-MS --- anti-oxidant --- Ficus glumosa --- polyphenols --- HPLC-ESI-MS/MS --- antiproliferative --- antioxidant --- Ayurveda --- Divya-Swasari-Vati --- herbal medicine --- UPLC/QToF MS --- validation --- Allium cepa L. --- Box–Behnken --- flavonoids --- quercetin glycosides --- liquid chromatography --- multiresponse optimization --- onion --- phenolic compounds --- UHPLC --- HPLC-MS/MS --- steroidal hormones --- anti-doping --- bovine blood --- equine blood --- natural products --- plant materials --- dietary supplements --- terpenes --- capillary liquid chromatography --- steroids --- skin permeability --- thin layer chromatography --- calculated physicochemical descriptors --- topical formulation --- anti-cellulite --- cosmetic --- monoterpenoids --- accelerated stability --- F0 concept --- steam sterilization --- sterilization safety --- glucose degradation products --- α-dicarbonyl compounds --- derivatization --- tandem mass spectrometry --- Geobacillus stearothermophilus --- paracetamol --- accuracy profile --- 3D printed --- formulation --- biorelevant media
Listing 1 - 8 of 8 |
Sort by
|