Listing 1 - 10 of 32 | << page >> |
Sort by
|
Choose an application
Nowadays the application of multisensor systems for the analysis of liquids and gases is becoming more and more popular in analytical chemistry. Such systems, also known as “electronic tongues” and “electronic noses” are based on various types of chemical sensors and biosensors with different transduction principles combined with multivariate data processing protocols. These instruments received significant interest due to their simplicity, low costs and the possibility to obtain reliable chemical information from complex unresolved analytical signals. A distinct feature of electronic tongues and noses is that they can be calibrated for prediction of complex integral features in samples, like e.g. taste, odor, toxicity, geographical origin, general conformity with certain standards, etc. – the tasks that otherwise would require involvement of complex analytical instrumentation, human or animal sensory panels. In the present eBook the original research and review articles in the area of multisensor approach are collected. They dedicated to the novel sensor materials development, measuring techniques evaluation, electronics, data processing protocols and practical applications. An editorial foreword article is followed by the researches authored by leading scientists in the field of chemical sensors and artificial sensing systems. With this eBook we hope to inspire further interest and new research efforts in this exciting area.
multisensory systems --- chemometrics --- Electronic nose (E-nose) --- electronic tongue (E-Tongue) --- chemical sensors
Choose an application
Nowadays the application of multisensor systems for the analysis of liquids and gases is becoming more and more popular in analytical chemistry. Such systems, also known as “electronic tongues” and “electronic noses” are based on various types of chemical sensors and biosensors with different transduction principles combined with multivariate data processing protocols. These instruments received significant interest due to their simplicity, low costs and the possibility to obtain reliable chemical information from complex unresolved analytical signals. A distinct feature of electronic tongues and noses is that they can be calibrated for prediction of complex integral features in samples, like e.g. taste, odor, toxicity, geographical origin, general conformity with certain standards, etc. – the tasks that otherwise would require involvement of complex analytical instrumentation, human or animal sensory panels. In the present eBook the original research and review articles in the area of multisensor approach are collected. They dedicated to the novel sensor materials development, measuring techniques evaluation, electronics, data processing protocols and practical applications. An editorial foreword article is followed by the researches authored by leading scientists in the field of chemical sensors and artificial sensing systems. With this eBook we hope to inspire further interest and new research efforts in this exciting area.
multisensory systems --- chemometrics --- Electronic nose (E-nose) --- electronic tongue (E-Tongue) --- chemical sensors
Choose an application
Nowadays the application of multisensor systems for the analysis of liquids and gases is becoming more and more popular in analytical chemistry. Such systems, also known as “electronic tongues” and “electronic noses” are based on various types of chemical sensors and biosensors with different transduction principles combined with multivariate data processing protocols. These instruments received significant interest due to their simplicity, low costs and the possibility to obtain reliable chemical information from complex unresolved analytical signals. A distinct feature of electronic tongues and noses is that they can be calibrated for prediction of complex integral features in samples, like e.g. taste, odor, toxicity, geographical origin, general conformity with certain standards, etc. – the tasks that otherwise would require involvement of complex analytical instrumentation, human or animal sensory panels. In the present eBook the original research and review articles in the area of multisensor approach are collected. They dedicated to the novel sensor materials development, measuring techniques evaluation, electronics, data processing protocols and practical applications. An editorial foreword article is followed by the researches authored by leading scientists in the field of chemical sensors and artificial sensing systems. With this eBook we hope to inspire further interest and new research efforts in this exciting area.
multisensory systems --- chemometrics --- Electronic nose (E-nose) --- electronic tongue (E-Tongue) --- chemical sensors
Choose an application
Nanotechnology-based E-Noses reviews advances in nanomaterials and their modification for use in e-sensors. "E-noses" or "electronic sensors" are emerging as advanced technologies for the fast detection of chemicals, gases, and explosives. The concept behind the "e-nose" is similar to the capability of humans and dogs in detecting materials based on odors. Nanomaterials can be used for e-nose technologies but their properties must be modified to make them effective sensors. The sensing capability and performance of these materials depend on several factors, such as morphology, dopants, microadditives, design of sensors, phase, and structure of the nanomaterials. Theoretical understanding of nanomaterials and technologies for improving sensors with better detection limits are covered. The most relevant nanomaterials, their synthesis strategies, and the relationship between properties and device performance are provided. Current state-of-the-art progress in nanotechnology device fabrication along with directions for future applications and challenges are discussed.
Detectors. --- Nanostructured materials. --- Nanomaterials --- Nanometer materials --- Nanophase materials --- Nanostructure controlled materials --- Nanostructure materials --- Ultra-fine microstructure materials --- Microstructure --- Nanotechnology --- Sensors --- Engineering instruments --- Physical instruments --- Electronic Nose --- Nanotechnology. --- Electronic Nose.
Choose an application
The market for chemical sensors continues to grow at a rapid rate, reflecting the wide range of possibilities for improving technological processes in industry and agriculture as well as living conditions that can be enhanced by the use of chemical sensors. The military, medicine, air/space, and security markets also continue to drive research and development in this area. At present it is hard to imagine an area where chemical sensors would be useless. On the contrary, we note that every day new areas arise in which new analytical instrumentation with modern functional opportunities is urgently needed.
Chemical detectors. --- Chemical sensors --- Chemical apparatus --- Detectors --- atmosphere monitoring --- chemical gas mixture analysis --- chemical sensor applications --- chemical sensor selection --- chemical sensor technologies --- chemical sensors --- electronic nose --- electronic tongue --- remote chemical sensing --- wireless chemical sensors
Choose an application
Les maladies subies par les plantes agricoles sont la source de grandes pertes économiques au niveau mondial. De plus, les moyens mis en oeuvre pour lutter contre ces maladies en agriculture conventionnelle sont loin d'être optimaux pour la biodiversité. C'est pourquoi il est essentiel de pouvoir détecter ces maladies efficacement, et ce le plus tôt possible affin de pouvoir les traiter en limitant les pertes et les impacts environnementaux. Parmi les nouvelles technologies de détection de maladie, les réseaux de capteurs chimiques, plus communément appelés "nez électroniques", ne sont pas encore utilisés en champ. Or, l'une des premières réactions d'une plante une fois infestée est l'émission de composés organiques volatils (COV) pouvant être capté s et analysés par ces réseaux de capteurs. La présente étude a été réalisée en deux phases. Une première phase en laboratoire s'est attachée à confirmer les connaissances sur les émissions en COV des plantes soumises à un stress, ainsi que de confirmer la capacité des capteurs à photo -ionisation (PID) à mesurer des COV émis par les plantes. La deuxième phase concerne la mise en place d'un nez électronique, ainsi que d' une méthodologie d'échantillonnage d'air provenant de l'environnement de plantes saines et d'autres infectées par fusarium spp, permettant de tester la capacité de discrimination du réseau de capteurs. Cette capacité a été testée via la mise en place d'analyses en composantes principales sur les données traitées de différentes manières ; ces mêmes données ont permis la production des modèles discriminants de type PLS-DA et Neural Network. En plus de l'état phytosanitaire, les discriminations entre deux variétés, ainsi qu'entre deux temps d'isolation permettant à l'air environnant les plantes de se concentrer en COV, ont été testées. La première phase a permis de se rendre compte de l'importance de contrôler les conditions pendant les tests en laboratoire comme le taux de CO2 mais surtout la lumière. Elle a aussi mis en évidence la difficulté de travailler avec les COV. Ceux-ci ayant des sources multiples et souvent plus importantes que les plantes elles-mêmes, la contamination de l'enceinte par des COV extérieurs est vite arrivée. Néanmoins, il a pu être mis en évidence que le PID utilisé est capable de détecter les différences de concentrations d'émissions par des plantes stressées ou non. Durant la deuxième phase, le réseau de capteurs a été capable de différencier les "blancs", échantillons d'air prélevés en amont du vent et ne contenant donc pas de COV émis par le champ, des échantillons proprement dits, provenant de l'air environnant les plantes et ayant été concentré pendant deux ou quatre heures grâce à la mise en place d'un isolement d'air autour d'une plante. En revanche, la différenciation entre les échantillons provenant de plantes saines et d'autres de plantes infectées n'a pas été très concluante. En effet, les modèles produits présentent un taux de précision de maximum 67 %. En conclusion, cette technologie qu'est le réseau de capteurs chimiques est une bonne piste à développer dans le futur pour l'évaluation phytosanitaire d'une culture. Néanmoins, il reste à vériffier la possibilité de les améliorer pour augmenter leur capacité à différencier à un niveau de précision suffisant les mélanges gazeux induits par la maladie et ceux émis par la plante en temps normal. Pour ce faire, il faut continuer les recherches en améliorant la méthodologie de prélèvement des échantillons. Dans ce cadre, une identiffication des molécules composant les différents airs (blanc, sain, infesté, infesté et concentré) est une bonne piste. Des tests à base d'air non concentré constituent une étape ultérieure vers une potentielle mise en place d'un nez électronique analysant directement l'air en champ.
COV --- réseau de capteurs --- nez électronique --- froment d'hiver --- Tricticum aestivum --- odeurs --- composé organique volatil --- surveillance phytosanitaire --- VOC --- chimical sensors array --- electronic nose --- e-nose --- winter wheat --- Tricticum aestivum --- volatil organic compound --- plant monitoring --- Sciences du vivant > Agriculture & agronomie
Choose an application
The development of solid state gas sensors based on microtransducers and nanostructured sensing materials is the key point in the design of portable measurement systems able to reach sensing and identification performance comparable with analytical ones. In such a context several efforts must be spent of course in the development of the sensing material, but also in the choice of the transducer mechanism and its structure, in the electrical characterization of the performance and in the design of suitable measurement setups. This call for papers invites researchers worldwide to report about their novel results on the most recent advances and overview in design and measurements for applications in gas sensors, along with their relevant features and technological aspects. Original research papers are welcome (but not limited) on all aspects that focus on the most recent advances in: (i) basic principles and modeling of gas and VOCs sensors; (ii) new gas sensor principles and technologies; (iii) Characterization and measurements methodologies; (iv) transduction and sampling systems; (vi) package optimization; (vi) gas sensor based systems and applications.
indium oxide --- n/a --- environmental monitoring --- semiconductor --- gas sensor --- packed gas chromatographic column --- ultrathin carbon layer --- metal-oxide-semiconductor array sensor --- halitosis --- laser ablation --- capacitive micromachined ultrasonic transducers (CMUT) --- LTCC side via --- MEMS --- indirect packaging --- gas sensing --- efficiency --- bad breath --- electrospray --- array optimization --- low temperature co-fired ceramic (LTCC) --- electronic nose --- UV irradiation --- core/shell nanostructure --- combinatorial and high-throughput technique --- sensitive material --- hydrogen sulfide --- CO detection --- ZnO --- amperometric
Choose an application
This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions.
Chemical detectors. --- Solid state electronics. --- Nanostructured materials. --- Nanomaterials --- Nanometer materials --- Nanophase materials --- Nanostructure controlled materials --- Nanostructure materials --- Ultra-fine microstructure materials --- Microstructure --- Nanotechnology --- Electronics --- Semiconductors --- Solid state physics --- Chemical sensors --- Chemical apparatus --- Detectors --- chemical sensors --- molecular modeling --- solid-state devices --- electrochemistry of surfaces --- nanostructures --- semiconductors --- humidity sensor --- MIS hydrogen sensor --- microacoustic chemical sensor --- carbon nanotube array --- microcantilever-based sensor --- thermoelectric gas sensor --- polymeric electronic nose
Choose an application
This book, titled “Electronic Noses for Biomedical Applications and Environmental Monitoring”, includes original research works and reviews concerning the use of electronic nose technology in two of the more useful and interesting fields related to chemical compounds detection of gases. Authors have explained their latest research work, including different gas sensors and materials based on nanotechnology and novel applications of electronic noses for the detection of diverse diseases. Some reviews related to disease detection through breath analysis, odor monitoring systems standardization, and seawater quality monitoring are also included.
Technology: general issues --- chemical sensors --- eNose --- environmental monitoring --- seawater --- sensors --- volatile organic compounds --- gas sensors --- volatile organic compounds (VOCs) --- acetone --- metal oxides --- heterojunctions --- electronic nose --- biosensor --- diabetes --- FOX 4000 --- FAIMS --- urine sample --- non-invasive diagnosis --- medical application --- gas sensor --- SAW --- surface acoustic wave --- Love wave --- breath --- VOC --- ZIF --- Zeolite --- Campylobacter jejuni --- VOCs --- GC-MS SPME --- nanowire sensors --- PCA --- nanofibres --- tin oxide --- NO2 --- pollution --- electrospinning --- low detection temperature --- biomarkers --- diseases --- digestive system --- respiratory system --- air quality --- technical standards --- quality protocols --- emission monitoring --- sensor arrays --- performance testing --- minimum requirements
Choose an application
This book, titled “Electronic Noses for Biomedical Applications and Environmental Monitoring”, includes original research works and reviews concerning the use of electronic nose technology in two of the more useful and interesting fields related to chemical compounds detection of gases. Authors have explained their latest research work, including different gas sensors and materials based on nanotechnology and novel applications of electronic noses for the detection of diverse diseases. Some reviews related to disease detection through breath analysis, odor monitoring systems standardization, and seawater quality monitoring are also included.
chemical sensors --- eNose --- environmental monitoring --- seawater --- sensors --- volatile organic compounds --- gas sensors --- volatile organic compounds (VOCs) --- acetone --- metal oxides --- heterojunctions --- electronic nose --- biosensor --- diabetes --- FOX 4000 --- FAIMS --- urine sample --- non-invasive diagnosis --- medical application --- gas sensor --- SAW --- surface acoustic wave --- Love wave --- breath --- VOC --- ZIF --- Zeolite --- Campylobacter jejuni --- VOCs --- GC-MS SPME --- nanowire sensors --- PCA --- nanofibres --- tin oxide --- NO2 --- pollution --- electrospinning --- low detection temperature --- biomarkers --- diseases --- digestive system --- respiratory system --- air quality --- technical standards --- quality protocols --- emission monitoring --- sensor arrays --- performance testing --- minimum requirements
Listing 1 - 10 of 32 | << page >> |
Sort by
|