Listing 1 - 10 of 159 | << page >> |
Sort by
|
Choose an application
This series of books contains selected and edited lectures from summer schools organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of topical, introductory lectures. This is reflected by both the selection of topics addressed in the present volume, nanoelectronics, as well as the tutorial aspect of the contributions.
Choose an application
Choose an application
Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations. The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory. As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.
Choose an application
Choose an application
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable.
Group theory --- Quantum mechanics. Quantumfield theory --- Physics --- Spectrometric and optical chemical analysis --- quantumfysica --- electron spin resonance spectre --- informatietechnologie --- wiskunde --- fysica
Choose an application
Towards Solid-State Quantum Repeaters: Ultrafast, Coherent Optical Control and Spin-Photon Entanglement in Charged InAs Quantum Dots summarizes several state-of-the-art coherent spin manipulation experiments in III-V quantum dots. Both high-fidelity optical manipulation, decoherence due to nuclear spins and the spin coherence extraction are discussed, as is the generation of entanglement between a single spin qubit and a photonic qubit. The experimental results are analyzed and discussed in the context of future quantum technologies, such as quantum repeaters. Single spins in optically active semiconductor host materials have emerged as leading candidates for quantum information processing (QIP). The quantum nature of the spin allows for encoding of stationary, memory quantum bits (qubits), and the relatively weak interaction with the host material preserves the spin coherence. On the other hand, optically active host materials permit direct interfacing with light, which can be used for all-optical qubit manipulation, and for efficiently mapping matter qubits into photonic qubits that are suited for long-distance quantum communication.
Elementary particles --- Physics --- Spectrometric and optical chemical analysis --- elementaire deeltjes --- electron spin resonance spectre --- kwantumleer --- informatietechnologie --- fysica
Choose an application
The two-volume textbook Quantum Mechanics for Pedestrians provides an introduction to the basics of nonrelativistic quantum mechanics. Originally written as a course for students of science education, the book addresses all those science students and others who are looking for a reasonably simple, fresh and modern introduction to the field. The basic principles of quantum mechanics are presented in the first volume. This second volume discusses applications and extensions to more complex problems. In addition to topics traditionally dealt with in quantum mechanics texts, such as symmetries or many-body problems, here also issues of current interest such as entanglement, Bell's inequalities, decoherence and various aspects of quantum information are treated in detail. Furthermore, questions of the basis of quantum mechanics and epistemological issues are discussed explicitly; these are relevant e.g. to the realism debate. A chapter on the interpretations of quantum mechanics completes this volume. The necessary mathematical tools are introduced step by step; in the appendix, the most relevant mathematics is compiled in compact form. More advanced topics such as the Lenz vector, Hardy's experiment and Shor's algorithm are treated in more detail in the appendix. As an essential aid to learning and teaching, 130 exercises are included, most of them with their solutions.
Mathematics --- Quantum mechanics. Quantumfield theory --- Physics --- Spectrometric and optical chemical analysis --- quantumfysica --- electron spin resonance spectre --- informatietechnologie --- wiskunde --- fysica
Choose an application
How much knowledge can we gain about a physical system and to what degree can we control it? In quantum optical systems, such as ion traps or neutral atoms in cavities, single particles and their correlations can now be probed in a way that is fundamentally limited only by the laws of quantum mechanics. In contrast, quantum many-body systems pose entirely new challenges due to the enormous number of microscopic parameters and their small length- and short time-scales. This thesis describes a new approach to probing quantum many-body systems at the level of individual particles: Using high-resolution, single-particle-resolved imaging and manipulation of strongly correlated atoms, single atoms can be detected and manipulated due to the large length and time-scales and the precise control of internal degrees of freedom. Such techniques lay stepping stones for the experimental exploration of new quantum many-body phenomena and applications thereof, such as quantum simulation and quantum information, through the design of systems at the microscopic scale and the measurement of previously inaccessible observables.
Choose an application
This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
Choose an application
Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of quantum, classical and hybrid technologies.
Listing 1 - 10 of 159 | << page >> |
Sort by
|