Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2021 (6)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Lattice-Preferred Orientation and Microstructures of Minerals and Their Implications for Seismic Anisotropy
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The lattice-preferred orientation (LPO) of minerals is important for interpreting seismic anisotropy, which occurs in the Earth’s crust and mantle, and for understanding the internal structure of the deep interior of the Earth. The characterization of microstructures, including LPO, grain size, grain shape, and misorientation, is important to determine the deformation conditions, deformation histories, kinematics, and seismic anisotropies in the crust and mantle The articles in this Special Issue prove that studies of LPO and microstructures of minerals and rocks are a major research area and provide a foundation for interpreting seismic anisotropy in the crust, mantle, and subduction zones. Therefore, the authors hope that this Special Issue encompassing recent advances in the measurement of LPOs of different minerals under various tectonic settings will be a fundamental and valuable resource for the readers and researchers interested in exploring the deformation conditions of minerals and rocks, as well as the interpretation of seismic anisotropy in the crust, mantle, and subduction zones.


Book
Lattice-Preferred Orientation and Microstructures of Minerals and Their Implications for Seismic Anisotropy
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The lattice-preferred orientation (LPO) of minerals is important for interpreting seismic anisotropy, which occurs in the Earth’s crust and mantle, and for understanding the internal structure of the deep interior of the Earth. The characterization of microstructures, including LPO, grain size, grain shape, and misorientation, is important to determine the deformation conditions, deformation histories, kinematics, and seismic anisotropies in the crust and mantle The articles in this Special Issue prove that studies of LPO and microstructures of minerals and rocks are a major research area and provide a foundation for interpreting seismic anisotropy in the crust, mantle, and subduction zones. Therefore, the authors hope that this Special Issue encompassing recent advances in the measurement of LPOs of different minerals under various tectonic settings will be a fundamental and valuable resource for the readers and researchers interested in exploring the deformation conditions of minerals and rocks, as well as the interpretation of seismic anisotropy in the crust, mantle, and subduction zones.


Book
Lattice-Preferred Orientation and Microstructures of Minerals and Their Implications for Seismic Anisotropy
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The lattice-preferred orientation (LPO) of minerals is important for interpreting seismic anisotropy, which occurs in the Earth’s crust and mantle, and for understanding the internal structure of the deep interior of the Earth. The characterization of microstructures, including LPO, grain size, grain shape, and misorientation, is important to determine the deformation conditions, deformation histories, kinematics, and seismic anisotropies in the crust and mantle The articles in this Special Issue prove that studies of LPO and microstructures of minerals and rocks are a major research area and provide a foundation for interpreting seismic anisotropy in the crust, mantle, and subduction zones. Therefore, the authors hope that this Special Issue encompassing recent advances in the measurement of LPOs of different minerals under various tectonic settings will be a fundamental and valuable resource for the readers and researchers interested in exploring the deformation conditions of minerals and rocks, as well as the interpretation of seismic anisotropy in the crust, mantle, and subduction zones.

Keywords

Research & information: general --- Environmental economics --- microstructural evolution --- lattice preferred orientation --- olivine in Åheim --- amphibole --- seismic anisotropy --- seismic velocity --- olivine-rich eclogite --- Western Gneiss Region --- glaucophane --- epidote --- deformation experiment --- simple shear --- dislocation glide --- cataclastic flow --- spinel peridotite xenoliths --- deformation microstructures --- petrogenesis --- mantle heterogeneity --- Baekdusan volcano --- Ice --- microstructure --- crystallographic preferred orientation (CPO) --- Styx Glacier --- electron backscatter diffraction (EBSD) --- Val Malenco --- serpentinized peridotite --- tectonic evolution --- deformation --- strain localization --- phyllite --- muscovite --- chlorite --- retrograded eclogite --- topotactic growth --- reflection coefficient --- omphacite --- subduction zone --- lattice-preferred orientation --- Xitieshan eclogite --- lawsonite --- twin --- blueschist --- crystal preferred orientation --- microstructural evolution --- lattice preferred orientation --- olivine in Åheim --- amphibole --- seismic anisotropy --- seismic velocity --- olivine-rich eclogite --- Western Gneiss Region --- glaucophane --- epidote --- deformation experiment --- simple shear --- dislocation glide --- cataclastic flow --- spinel peridotite xenoliths --- deformation microstructures --- petrogenesis --- mantle heterogeneity --- Baekdusan volcano --- Ice --- microstructure --- crystallographic preferred orientation (CPO) --- Styx Glacier --- electron backscatter diffraction (EBSD) --- Val Malenco --- serpentinized peridotite --- tectonic evolution --- deformation --- strain localization --- phyllite --- muscovite --- chlorite --- retrograded eclogite --- topotactic growth --- reflection coefficient --- omphacite --- subduction zone --- lattice-preferred orientation --- Xitieshan eclogite --- lawsonite --- twin --- blueschist --- crystal preferred orientation


Book
Micromanufacturing of Metallic Materials
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Product miniaturization is a trend for facilitating product usage, enabling product functions to be implemented in microscale geometries, and aimed at reducing product weight, volume, cost and pollution. Driven by ongoing miniaturization in diverse areas, including medical devices, precision equipment, communication devices, micro-electromechanical systems and microsystems technology, the demands for micro metallic products have been tremendously increased. Such a trend requires the development of advanced technology for the micromanufacturing of metallic materials, with regard to producing high-quality micro metallic products that possess excellent dimensional tolerances, the required mechanical properties and improved surface quality. Micromanufacturing differs from conventional manufacturing technology in terms of materials, processes, tools, and machines and equipment, due to the miniaturization nature of the whole micromanufacturing system, which challenges the rapid development of micromanufacturing technology. Such a background has prompted and encouraged us to publish a scholarly book on the topic of the micromanufacturing of metallic materials, with the purpose of providing readers with a valuable document that can be used in the research and development of micromanufacturing technology. This book will be useful for both theoretical and applied research aimed at micromanufacturing technology, and will serve as an important research tool, providing knowledge to be returned to the community not only as valuable scientific literature, but also as technology, processes and productivities.

Keywords

magnesium alloy --- equal channel angular pressing --- processing route --- miniaturized tensile tests --- slip systems --- twinning --- slow tool servo --- ultra-precision diamond turning --- micro lens arrays (MLAs) --- chatter mark --- forming method --- metallic glasses --- thermoplastic microforming --- ultrasonic vibration --- formability --- freeform optics --- tool path generation --- large aperture optics --- ultra-thin foil --- slip system evolution --- tensile process --- crystal plasticity --- numerical simulation --- grain orientation --- fine blanking --- metallic microgear --- finite element analysis --- electron backscatter diffraction --- critical fracture value --- packaging --- copper substrate --- micro-embossing --- micro-textures --- plasma printing --- micro-punch array --- screen printing --- AISI316 --- surface microstructure --- electrically-assisted rolling --- current density --- T2 copper foil --- additive manufacturing --- residual stress --- thermal stress --- distortion --- prevention --- modeling --- computation --- electrically assisted --- bio-inspired functional surface --- bulk metallic glass --- photolithography --- acoustic softening --- residual effect --- microthin sheet --- forming limit --- punch load --- cut surface quality --- optimum clearance --- blanking experimental --- finite element method analysis --- EDM --- surface --- optimization --- machining --- titanium --- difficult-to-cut material --- Inconel 718 alloy --- micro-drilling --- aspect ratio hole --- deionized water --- micromanufacturing --- metallic materials --- miniaturization --- micro products


Book
Micromanufacturing of Metallic Materials
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Product miniaturization is a trend for facilitating product usage, enabling product functions to be implemented in microscale geometries, and aimed at reducing product weight, volume, cost and pollution. Driven by ongoing miniaturization in diverse areas, including medical devices, precision equipment, communication devices, micro-electromechanical systems and microsystems technology, the demands for micro metallic products have been tremendously increased. Such a trend requires the development of advanced technology for the micromanufacturing of metallic materials, with regard to producing high-quality micro metallic products that possess excellent dimensional tolerances, the required mechanical properties and improved surface quality. Micromanufacturing differs from conventional manufacturing technology in terms of materials, processes, tools, and machines and equipment, due to the miniaturization nature of the whole micromanufacturing system, which challenges the rapid development of micromanufacturing technology. Such a background has prompted and encouraged us to publish a scholarly book on the topic of the micromanufacturing of metallic materials, with the purpose of providing readers with a valuable document that can be used in the research and development of micromanufacturing technology. This book will be useful for both theoretical and applied research aimed at micromanufacturing technology, and will serve as an important research tool, providing knowledge to be returned to the community not only as valuable scientific literature, but also as technology, processes and productivities.

Keywords

History of engineering & technology --- magnesium alloy --- equal channel angular pressing --- processing route --- miniaturized tensile tests --- slip systems --- twinning --- slow tool servo --- ultra-precision diamond turning --- micro lens arrays (MLAs) --- chatter mark --- forming method --- metallic glasses --- thermoplastic microforming --- ultrasonic vibration --- formability --- freeform optics --- tool path generation --- large aperture optics --- ultra-thin foil --- slip system evolution --- tensile process --- crystal plasticity --- numerical simulation --- grain orientation --- fine blanking --- metallic microgear --- finite element analysis --- electron backscatter diffraction --- critical fracture value --- packaging --- copper substrate --- micro-embossing --- micro-textures --- plasma printing --- micro-punch array --- screen printing --- AISI316 --- surface microstructure --- electrically-assisted rolling --- current density --- T2 copper foil --- additive manufacturing --- residual stress --- thermal stress --- distortion --- prevention --- modeling --- computation --- electrically assisted --- bio-inspired functional surface --- bulk metallic glass --- photolithography --- acoustic softening --- residual effect --- microthin sheet --- forming limit --- punch load --- cut surface quality --- optimum clearance --- blanking experimental --- finite element method analysis --- EDM --- surface --- optimization --- machining --- titanium --- difficult-to-cut material --- Inconel 718 alloy --- micro-drilling --- aspect ratio hole --- deionized water --- micromanufacturing --- metallic materials --- miniaturization --- micro products --- magnesium alloy --- equal channel angular pressing --- processing route --- miniaturized tensile tests --- slip systems --- twinning --- slow tool servo --- ultra-precision diamond turning --- micro lens arrays (MLAs) --- chatter mark --- forming method --- metallic glasses --- thermoplastic microforming --- ultrasonic vibration --- formability --- freeform optics --- tool path generation --- large aperture optics --- ultra-thin foil --- slip system evolution --- tensile process --- crystal plasticity --- numerical simulation --- grain orientation --- fine blanking --- metallic microgear --- finite element analysis --- electron backscatter diffraction --- critical fracture value --- packaging --- copper substrate --- micro-embossing --- micro-textures --- plasma printing --- micro-punch array --- screen printing --- AISI316 --- surface microstructure --- electrically-assisted rolling --- current density --- T2 copper foil --- additive manufacturing --- residual stress --- thermal stress --- distortion --- prevention --- modeling --- computation --- electrically assisted --- bio-inspired functional surface --- bulk metallic glass --- photolithography --- acoustic softening --- residual effect --- microthin sheet --- forming limit --- punch load --- cut surface quality --- optimum clearance --- blanking experimental --- finite element method analysis --- EDM --- surface --- optimization --- machining --- titanium --- difficult-to-cut material --- Inconel 718 alloy --- micro-drilling --- aspect ratio hole --- deionized water --- micromanufacturing --- metallic materials --- miniaturization --- micro products


Book
Processing-Structure-Property Relationships in Metals
Authors: ---
ISBN: 3039217712 3039217704 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.

Keywords

high speed steel --- n/a --- tempering --- microstructure. --- microstructure --- severe plastic deformation --- aging treatment --- indentation hardness --- Nb tube --- secondary recrystallization --- static mechanical behavior --- image analysis --- nanostructured coatings --- thin aluminum sheet --- precipitation behavior --- additive manufacturing --- Ti-6Al-4V alloy --- grain boundary --- property-microstructure-process relationship --- aeronautic applications --- inductive hot pressing --- fracture surface --- indentation modulus --- alloys --- intermetallic --- ultrafine grain --- columnar microstructure --- titanium composites --- multimodal --- steering knuckles --- ultra-fine grain --- damping --- process monitoring --- Al alloys --- tribology --- retained austenite --- mechanical properties --- texture inhomogeneity --- metal posts --- FEGSEM --- ?-platelet thickness --- anelasticity --- warm working --- dental materials --- computer-aided design (CAD) --- SEM --- high strength --- SEBM --- non-monotonic simple shear strains --- cavitation erosion --- aluminum film --- impact toughness --- wear --- mechanical property --- in situ secondary phases --- bainite rail --- corrosion resistance --- macro-instrumented indentation test --- EBM --- cryorolling --- aluminum alloy --- equal channel angular pressing --- microstructure inhomogeneity --- casting --- electron backscatter diffraction --- prediction model --- grain boundaries --- porosity --- texture --- high pressure die casting --- shear strain reversal --- finite element analysis --- thin films --- AZ91 alloy --- tensile properties --- tensile property --- Al 6061 alloys --- aging --- reduction --- Mg-10Y-6Gd-1.5Zn-0.5Zr --- caliber-rolling --- shrinkage


Book
Micromanufacturing of Metallic Materials
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Product miniaturization is a trend for facilitating product usage, enabling product functions to be implemented in microscale geometries, and aimed at reducing product weight, volume, cost and pollution. Driven by ongoing miniaturization in diverse areas, including medical devices, precision equipment, communication devices, micro-electromechanical systems and microsystems technology, the demands for micro metallic products have been tremendously increased. Such a trend requires the development of advanced technology for the micromanufacturing of metallic materials, with regard to producing high-quality micro metallic products that possess excellent dimensional tolerances, the required mechanical properties and improved surface quality. Micromanufacturing differs from conventional manufacturing technology in terms of materials, processes, tools, and machines and equipment, due to the miniaturization nature of the whole micromanufacturing system, which challenges the rapid development of micromanufacturing technology. Such a background has prompted and encouraged us to publish a scholarly book on the topic of the micromanufacturing of metallic materials, with the purpose of providing readers with a valuable document that can be used in the research and development of micromanufacturing technology. This book will be useful for both theoretical and applied research aimed at micromanufacturing technology, and will serve as an important research tool, providing knowledge to be returned to the community not only as valuable scientific literature, but also as technology, processes and productivities.

Keywords

History of engineering & technology --- magnesium alloy --- equal channel angular pressing --- processing route --- miniaturized tensile tests --- slip systems --- twinning --- slow tool servo --- ultra-precision diamond turning --- micro lens arrays (MLAs) --- chatter mark --- forming method --- metallic glasses --- thermoplastic microforming --- ultrasonic vibration --- formability --- freeform optics --- tool path generation --- large aperture optics --- ultra-thin foil --- slip system evolution --- tensile process --- crystal plasticity --- numerical simulation --- grain orientation --- fine blanking --- metallic microgear --- finite element analysis --- electron backscatter diffraction --- critical fracture value --- packaging --- copper substrate --- micro-embossing --- micro-textures --- plasma printing --- micro-punch array --- screen printing --- AISI316 --- surface microstructure --- electrically-assisted rolling --- current density --- T2 copper foil --- additive manufacturing --- residual stress --- thermal stress --- distortion --- prevention --- modeling --- computation --- electrically assisted --- bio-inspired functional surface --- bulk metallic glass --- photolithography --- acoustic softening --- residual effect --- microthin sheet --- forming limit --- punch load --- cut surface quality --- optimum clearance --- blanking experimental --- finite element method analysis --- EDM --- surface --- optimization --- machining --- titanium --- difficult-to-cut material --- Inconel 718 alloy --- micro-drilling --- aspect ratio hole --- deionized water --- micromanufacturing --- metallic materials --- miniaturization --- micro products

Listing 1 - 7 of 7
Sort by