Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2021 (6)

2020 (3)

2019 (1)

Listing 1 - 10 of 10
Sort by

Book
Neural Microelectrodes: Design and Applications
Authors: ---
ISBN: 3039213202 3039213199 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Neural electrodes enable the recording and stimulation of bioelectrical activity in the nervous system. This technology provides neuroscientists with the means to probe the functionality of neural circuitry in both health and disease. In addition, neural electrodes can deliver therapeutic stimulation for the relief of debilitating symptoms associated with neurological disorders such as Parkinson’s disease and may serve as the basis for the restoration of sensory perception through peripheral nerve and brain regions after disease or injury. Lastly, microscale neural electrodes recording signals associated with volitional movement in paralyzed individuals can be decoded for controlling external devices and prosthetic limbs or driving the stimulation of paralyzed muscles for functional movements. In spite of the promise of neural electrodes for a range of applications, chronic performance remains a goal for long-term basic science studies, as well as clinical applications. New perspectives and opportunities from fields including tissue biomechanics, materials science, and biological mechanisms of inflammation and neurodegeneration are critical to advances in neural electrode technology. This Special Issue will address the state-of-the-art knowledge and emerging opportunities for the development and demonstration of advanced neural electrodes.

Keywords

n/a --- closed-loop --- in vivo imaging --- education --- thermoresistance --- neural probe --- electroless plating --- neural stimulation and recording --- peripheral nerve stimulation --- shape-memory-polymer --- artifact --- sensor interface --- magnetic coupling --- neuroprosthetics --- intracortical implant --- µECoG --- neural interfaces --- implantable --- electrochemistry --- shape memory polymer --- neuroscience --- micromachine --- microelectromechanical systems --- stiffness --- Parylene C --- intracranial electrodes --- chronic implantation --- neural interfacing --- microelectrodes --- multiplexing --- microstimulators --- freely-behaving --- windowed integration sampling --- system-on-chip --- brain-machine interfaces --- insertion force --- microelectrode array --- vagus nerve --- diversity --- micro-electromechanical systems (MEMS) technologies --- mixed-signal feedback --- temperature monitoring --- foreign body reaction --- peripheral nerves --- brain–computer interface --- multi-disciplinary --- neurotechnology --- photolithography --- micro-electrocorticography --- robust microelectrode --- conscious recording --- electrode array --- dopamine --- softening --- sciatic nerve --- bio-inspired --- neural prostheses --- neuroscientific research --- bidirectional --- LED chip --- microfluidic device --- electrode–tissue interface --- impedance --- intracortical --- silicon carbide --- three-dimensional --- bias --- micro-electromechanical systems (MEMS) --- silicon neural probes --- electrode degradation --- chronic --- microelectrode --- biocompatibility --- optogenetics --- fast-scan cyclic voltammetry (FSCV) --- glial encapsulation --- deep brain stimulation --- electrocorticography --- electrophysiology --- fast scan cyclic voltammetry --- precision medicine --- microfabrication --- BRAIN Initiative --- polymer --- magnetic resonance imaging --- polymer nanocomposite --- liquid crystal elastomer --- silicon probe --- training --- tissue response --- graphene --- electrode --- glassy carbon electrode --- immune response --- electrode implantation --- dextran --- immunohistochemistry --- neural interface response --- amorphous silicon carbide --- Utah electrode arrays --- neural amplifier --- neural electrode array --- neuromodulation --- in vivo electrophysiology --- neuronal recordings --- neural recording --- ECoG --- gene modification --- neural interface --- wireless --- enteric nervous system --- cellulose nanocrystals --- brain-computer interface --- electrode-tissue interface


Book
Stem Cell Research on Cardiology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Even today, cardiovascular diseases are the main cause of death worldwide, and therapeutic approaches are very restricted. Due to the limited regenerative capabilities of terminally differentiated cardiomyocytes post injury, new strategies to treat cardiac patients are urgently needed. Post myocardial injury, resident fibroblasts begin to generate the extracellular matrix, resulting in fibrosis, and finally, cardiac failure. Recently, preclinical investigations and clinical trials raised hope in stem cell-based approaches, to be an effective therapy option for these diseases. So far, several types of stem cells have been identified to be promising candidates to be applied for treatment: cardiac progenitor cells, bone marrow derived stem cells, embryonic and induced pluripotent stem cells, as well as their descendants. Furthermore, the innovative techniques of direct cardiac reprogramming of cells offered promising options for cardiovascular research, in vitro and in vivo. Hereby, the investigation of underlying and associated mechanisms triggering the therapeutic effects of stem cell application is of particular importance to improve approaches for heart patients. This Special Issue of Cells provides the latest update in the rapidly developing field of regenerative medicine in cardiology.

Keywords

Research & information: general --- Biology, life sciences --- Fabry disease --- human embryonic stem cells --- CRISPR/Cas9 genomic editing --- Mass spectrometry proteomic analysis --- hypertrophic cardiomyopathy --- disease model --- physical exercise --- cardiac cellular regeneration --- microRNA (miR) --- Akt signaling --- cardiomyocyte proliferation --- cardiac hypertrophy --- cardioprotection --- myocarditis --- inflammation --- leukocytes --- cardiomyocytes --- multi-electrode-array --- micro-electrode-array --- MEA --- drug/toxicity screening --- field potential --- arrhythmia --- electrocardiography --- cardiac regeneration --- stem cells --- iPSC --- PSC --- ESC --- cardiovascular disease --- regeneration --- cardiac progenitor cells --- induced pluripotent stem cells --- transdifferentiation --- direct reprogramming --- genetic engineering --- cardiac tissue engineering --- biomaterials --- 18F-FDG PET --- cardiac induced cells --- cardiac function --- non-invasive imaging --- human pluripotent stem cell --- ventricular --- maturation --- bone marrow stem cells --- angiogenesis --- myocardial infarction --- human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) --- iPS cells --- big conductance calcium activated potassium channel (BK) --- Maxi-K --- slo1 --- KCa1.1 --- iberiotoxin --- long QT syndrome --- mesenchymal stromal cells (MSC) --- mRNA --- miRNA --- cardiac reprogramming --- cardiac differentiation --- cardiovascular diseases --- adult stem cells --- myocardial infraction --- 3D printing --- 3D model --- bioprinting --- cardiovascular medicine --- heart --- myocardium --- heart valves --- vascular graft --- endothelialization --- tissue engineering --- decorin --- fibronectin --- electrospinning --- endothelial progenitor cells --- bioreactor --- biostable polyurethane --- MicroRNA --- Mir-133 --- coronary heart disease --- biomarker --- meta-analysis


Book
Stem Cell Research on Cardiology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Even today, cardiovascular diseases are the main cause of death worldwide, and therapeutic approaches are very restricted. Due to the limited regenerative capabilities of terminally differentiated cardiomyocytes post injury, new strategies to treat cardiac patients are urgently needed. Post myocardial injury, resident fibroblasts begin to generate the extracellular matrix, resulting in fibrosis, and finally, cardiac failure. Recently, preclinical investigations and clinical trials raised hope in stem cell-based approaches, to be an effective therapy option for these diseases. So far, several types of stem cells have been identified to be promising candidates to be applied for treatment: cardiac progenitor cells, bone marrow derived stem cells, embryonic and induced pluripotent stem cells, as well as their descendants. Furthermore, the innovative techniques of direct cardiac reprogramming of cells offered promising options for cardiovascular research, in vitro and in vivo. Hereby, the investigation of underlying and associated mechanisms triggering the therapeutic effects of stem cell application is of particular importance to improve approaches for heart patients. This Special Issue of Cells provides the latest update in the rapidly developing field of regenerative medicine in cardiology.

Keywords

Fabry disease --- human embryonic stem cells --- CRISPR/Cas9 genomic editing --- Mass spectrometry proteomic analysis --- hypertrophic cardiomyopathy --- disease model --- physical exercise --- cardiac cellular regeneration --- microRNA (miR) --- Akt signaling --- cardiomyocyte proliferation --- cardiac hypertrophy --- cardioprotection --- myocarditis --- inflammation --- leukocytes --- cardiomyocytes --- multi-electrode-array --- micro-electrode-array --- MEA --- drug/toxicity screening --- field potential --- arrhythmia --- electrocardiography --- cardiac regeneration --- stem cells --- iPSC --- PSC --- ESC --- cardiovascular disease --- regeneration --- cardiac progenitor cells --- induced pluripotent stem cells --- transdifferentiation --- direct reprogramming --- genetic engineering --- cardiac tissue engineering --- biomaterials --- 18F-FDG PET --- cardiac induced cells --- cardiac function --- non-invasive imaging --- human pluripotent stem cell --- ventricular --- maturation --- bone marrow stem cells --- angiogenesis --- myocardial infarction --- human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) --- iPS cells --- big conductance calcium activated potassium channel (BK) --- Maxi-K --- slo1 --- KCa1.1 --- iberiotoxin --- long QT syndrome --- mesenchymal stromal cells (MSC) --- mRNA --- miRNA --- cardiac reprogramming --- cardiac differentiation --- cardiovascular diseases --- adult stem cells --- myocardial infraction --- 3D printing --- 3D model --- bioprinting --- cardiovascular medicine --- heart --- myocardium --- heart valves --- vascular graft --- endothelialization --- tissue engineering --- decorin --- fibronectin --- electrospinning --- endothelial progenitor cells --- bioreactor --- biostable polyurethane --- MicroRNA --- Mir-133 --- coronary heart disease --- biomarker --- meta-analysis


Book
Stem Cell Research on Cardiology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Even today, cardiovascular diseases are the main cause of death worldwide, and therapeutic approaches are very restricted. Due to the limited regenerative capabilities of terminally differentiated cardiomyocytes post injury, new strategies to treat cardiac patients are urgently needed. Post myocardial injury, resident fibroblasts begin to generate the extracellular matrix, resulting in fibrosis, and finally, cardiac failure. Recently, preclinical investigations and clinical trials raised hope in stem cell-based approaches, to be an effective therapy option for these diseases. So far, several types of stem cells have been identified to be promising candidates to be applied for treatment: cardiac progenitor cells, bone marrow derived stem cells, embryonic and induced pluripotent stem cells, as well as their descendants. Furthermore, the innovative techniques of direct cardiac reprogramming of cells offered promising options for cardiovascular research, in vitro and in vivo. Hereby, the investigation of underlying and associated mechanisms triggering the therapeutic effects of stem cell application is of particular importance to improve approaches for heart patients. This Special Issue of Cells provides the latest update in the rapidly developing field of regenerative medicine in cardiology.

Keywords

Research & information: general --- Biology, life sciences --- Fabry disease --- human embryonic stem cells --- CRISPR/Cas9 genomic editing --- Mass spectrometry proteomic analysis --- hypertrophic cardiomyopathy --- disease model --- physical exercise --- cardiac cellular regeneration --- microRNA (miR) --- Akt signaling --- cardiomyocyte proliferation --- cardiac hypertrophy --- cardioprotection --- myocarditis --- inflammation --- leukocytes --- cardiomyocytes --- multi-electrode-array --- micro-electrode-array --- MEA --- drug/toxicity screening --- field potential --- arrhythmia --- electrocardiography --- cardiac regeneration --- stem cells --- iPSC --- PSC --- ESC --- cardiovascular disease --- regeneration --- cardiac progenitor cells --- induced pluripotent stem cells --- transdifferentiation --- direct reprogramming --- genetic engineering --- cardiac tissue engineering --- biomaterials --- 18F-FDG PET --- cardiac induced cells --- cardiac function --- non-invasive imaging --- human pluripotent stem cell --- ventricular --- maturation --- bone marrow stem cells --- angiogenesis --- myocardial infarction --- human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) --- iPS cells --- big conductance calcium activated potassium channel (BK) --- Maxi-K --- slo1 --- KCa1.1 --- iberiotoxin --- long QT syndrome --- mesenchymal stromal cells (MSC) --- mRNA --- miRNA --- cardiac reprogramming --- cardiac differentiation --- cardiovascular diseases --- adult stem cells --- myocardial infraction --- 3D printing --- 3D model --- bioprinting --- cardiovascular medicine --- heart --- myocardium --- heart valves --- vascular graft --- endothelialization --- tissue engineering --- decorin --- fibronectin --- electrospinning --- endothelial progenitor cells --- bioreactor --- biostable polyurethane --- MicroRNA --- Mir-133 --- coronary heart disease --- biomarker --- meta-analysis


Book
Design and Application of Biomedical Circuits and Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is a collection of twelve papers on the design and application of biomedical circuits and systems. We hope you enjoy reading this Special Issue and become inspired to address technological challenges toward helping the medical industry and biologists to increase the quality of life for humans, which is the main objective. Several topics have been highlighted: muscle electrostimulation, analog front-end (AFE) circuits, waveform generators, real-time velocimetry estimators, interference suppression, bio-signal encryption, IoT electronic nose, ultrasound image processing, noise in medical imaging, elbow actuators, and aids for visually impaired people. We are conscious about the very wide scope of biomedical circuits and systems applications, and that our contribution represents only a grain of sand, though we expect to be useful in contributing to the progress of knowledge in the field.


Book
Design and Application of Biomedical Circuits and Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is a collection of twelve papers on the design and application of biomedical circuits and systems. We hope you enjoy reading this Special Issue and become inspired to address technological challenges toward helping the medical industry and biologists to increase the quality of life for humans, which is the main objective. Several topics have been highlighted: muscle electrostimulation, analog front-end (AFE) circuits, waveform generators, real-time velocimetry estimators, interference suppression, bio-signal encryption, IoT electronic nose, ultrasound image processing, noise in medical imaging, elbow actuators, and aids for visually impaired people. We are conscious about the very wide scope of biomedical circuits and systems applications, and that our contribution represents only a grain of sand, though we expect to be useful in contributing to the progress of knowledge in the field.


Book
Design and Application of Biomedical Circuits and Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is a collection of twelve papers on the design and application of biomedical circuits and systems. We hope you enjoy reading this Special Issue and become inspired to address technological challenges toward helping the medical industry and biologists to increase the quality of life for humans, which is the main objective. Several topics have been highlighted: muscle electrostimulation, analog front-end (AFE) circuits, waveform generators, real-time velocimetry estimators, interference suppression, bio-signal encryption, IoT electronic nose, ultrasound image processing, noise in medical imaging, elbow actuators, and aids for visually impaired people. We are conscious about the very wide scope of biomedical circuits and systems applications, and that our contribution represents only a grain of sand, though we expect to be useful in contributing to the progress of knowledge in the field.


Book
Novel Electrochemical Biosensors for Clinical Assays
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosensors, i.e., devices where biological molecules or bio(mimetic)structures are intimately coupled to a chemo/physical transducer for converting a biorecognition event into a measurable signal, have recently gained a wide (if not huge) academic and practical interest for the multitude of their applications in analysis, especially in the field of bioanalysis, medical diagnostics, and clinical assays. Indeed, thanks to their very simple use (permitting sometimes their application at home), the minimal sample pretreatment requirement, the higher selectivity, and sensitivity, biosensors are an essential tool in the detection and monitoring of a wide range of medical conditions from glycemia to Alzheimer’s disease as well as in the monitoring of drug responses. Soon, we expect that their importance and use in clinical diagnostics will expand rapidly so as to be of critical importance to public health in the coming years. This Special Issue would like to focus on recent research and development in the field of biosensors as analytical tools for clinical assays and medical diagnostics.

Keywords

Technology: general issues --- molecularly imprinted polymers (MIPs) --- surface imprinted polymers (SIPs) --- electrochemical biosensor --- biomarkers for infectious diseases --- choline biosensor --- amperometric detection --- overoxidized polypyrrole film --- phospholipase D assay --- phosphatidylcholine --- human epididymis protein 4 --- competitive electrochemical immunosensor --- WiFi portable potentiostat --- on-board calibration --- Internet of Things --- 1-methoxy-5-ethyl phenazinium ethyl sulfate --- disposable enzyme sensor --- lactate oxidase --- glucose dehydrogenase --- fructosyl peptide oxidase --- electrochemical enzyme sensor --- biomedical engineering --- surface plasmon resonance --- biosensors --- bio-functionalization optimization --- cost-effective biosensors --- lab-on-a-chip --- aptamer --- labeling --- enzyme --- zinc finger protein --- electrochemical sensor --- vascular endothelial growth factor --- breast cancer --- nanobiosensors --- biomarkers --- electrochemistry --- impedance --- immobilization --- nanomaterial --- nanoparticles (NPs) --- magnetic NPs --- self-assembled monolayers (SAMs) --- signal amplification --- optogenetics --- micro-electrode array --- in situ detection --- electrophysiology --- neural circuit recognition --- biosensor --- carbon dots --- norepinephrine --- tyrosinase --- voltammetry --- folic acid --- real samples --- analytical methods --- electrochemical tools --- choline analysis --- phosphocholine analysis --- choline oxidase --- alkaline phosphatase --- enzyme immobilization --- overoxidized polypyrrole --- electropolymerized non-conducting polymer --- dual electrode biosensor --- simultaneous determination --- flow injection analysis --- capacitive sensing --- alternating current electrokinetic effects --- miRNA sensing --- point-of-care diagnostics


Book
Novel Electrochemical Biosensors for Clinical Assays
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosensors, i.e., devices where biological molecules or bio(mimetic)structures are intimately coupled to a chemo/physical transducer for converting a biorecognition event into a measurable signal, have recently gained a wide (if not huge) academic and practical interest for the multitude of their applications in analysis, especially in the field of bioanalysis, medical diagnostics, and clinical assays. Indeed, thanks to their very simple use (permitting sometimes their application at home), the minimal sample pretreatment requirement, the higher selectivity, and sensitivity, biosensors are an essential tool in the detection and monitoring of a wide range of medical conditions from glycemia to Alzheimer’s disease as well as in the monitoring of drug responses. Soon, we expect that their importance and use in clinical diagnostics will expand rapidly so as to be of critical importance to public health in the coming years. This Special Issue would like to focus on recent research and development in the field of biosensors as analytical tools for clinical assays and medical diagnostics.

Keywords

molecularly imprinted polymers (MIPs) --- surface imprinted polymers (SIPs) --- electrochemical biosensor --- biomarkers for infectious diseases --- choline biosensor --- amperometric detection --- overoxidized polypyrrole film --- phospholipase D assay --- phosphatidylcholine --- human epididymis protein 4 --- competitive electrochemical immunosensor --- WiFi portable potentiostat --- on-board calibration --- Internet of Things --- 1-methoxy-5-ethyl phenazinium ethyl sulfate --- disposable enzyme sensor --- lactate oxidase --- glucose dehydrogenase --- fructosyl peptide oxidase --- electrochemical enzyme sensor --- biomedical engineering --- surface plasmon resonance --- biosensors --- bio-functionalization optimization --- cost-effective biosensors --- lab-on-a-chip --- aptamer --- labeling --- enzyme --- zinc finger protein --- electrochemical sensor --- vascular endothelial growth factor --- breast cancer --- nanobiosensors --- biomarkers --- electrochemistry --- impedance --- immobilization --- nanomaterial --- nanoparticles (NPs) --- magnetic NPs --- self-assembled monolayers (SAMs) --- signal amplification --- optogenetics --- micro-electrode array --- in situ detection --- electrophysiology --- neural circuit recognition --- biosensor --- carbon dots --- norepinephrine --- tyrosinase --- voltammetry --- folic acid --- real samples --- analytical methods --- electrochemical tools --- choline analysis --- phosphocholine analysis --- choline oxidase --- alkaline phosphatase --- enzyme immobilization --- overoxidized polypyrrole --- electropolymerized non-conducting polymer --- dual electrode biosensor --- simultaneous determination --- flow injection analysis --- capacitive sensing --- alternating current electrokinetic effects --- miRNA sensing --- point-of-care diagnostics


Book
Novel Electrochemical Biosensors for Clinical Assays
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosensors, i.e., devices where biological molecules or bio(mimetic)structures are intimately coupled to a chemo/physical transducer for converting a biorecognition event into a measurable signal, have recently gained a wide (if not huge) academic and practical interest for the multitude of their applications in analysis, especially in the field of bioanalysis, medical diagnostics, and clinical assays. Indeed, thanks to their very simple use (permitting sometimes their application at home), the minimal sample pretreatment requirement, the higher selectivity, and sensitivity, biosensors are an essential tool in the detection and monitoring of a wide range of medical conditions from glycemia to Alzheimer’s disease as well as in the monitoring of drug responses. Soon, we expect that their importance and use in clinical diagnostics will expand rapidly so as to be of critical importance to public health in the coming years. This Special Issue would like to focus on recent research and development in the field of biosensors as analytical tools for clinical assays and medical diagnostics.

Keywords

Technology: general issues --- molecularly imprinted polymers (MIPs) --- surface imprinted polymers (SIPs) --- electrochemical biosensor --- biomarkers for infectious diseases --- choline biosensor --- amperometric detection --- overoxidized polypyrrole film --- phospholipase D assay --- phosphatidylcholine --- human epididymis protein 4 --- competitive electrochemical immunosensor --- WiFi portable potentiostat --- on-board calibration --- Internet of Things --- 1-methoxy-5-ethyl phenazinium ethyl sulfate --- disposable enzyme sensor --- lactate oxidase --- glucose dehydrogenase --- fructosyl peptide oxidase --- electrochemical enzyme sensor --- biomedical engineering --- surface plasmon resonance --- biosensors --- bio-functionalization optimization --- cost-effective biosensors --- lab-on-a-chip --- aptamer --- labeling --- enzyme --- zinc finger protein --- electrochemical sensor --- vascular endothelial growth factor --- breast cancer --- nanobiosensors --- biomarkers --- electrochemistry --- impedance --- immobilization --- nanomaterial --- nanoparticles (NPs) --- magnetic NPs --- self-assembled monolayers (SAMs) --- signal amplification --- optogenetics --- micro-electrode array --- in situ detection --- electrophysiology --- neural circuit recognition --- biosensor --- carbon dots --- norepinephrine --- tyrosinase --- voltammetry --- folic acid --- real samples --- analytical methods --- electrochemical tools --- choline analysis --- phosphocholine analysis --- choline oxidase --- alkaline phosphatase --- enzyme immobilization --- overoxidized polypyrrole --- electropolymerized non-conducting polymer --- dual electrode biosensor --- simultaneous determination --- flow injection analysis --- capacitive sensing --- alternating current electrokinetic effects --- miRNA sensing --- point-of-care diagnostics

Listing 1 - 10 of 10
Sort by