Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (6)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Product/Process Fingerprint in Micro Manufacturing
Author:
ISBN: 3039210351 3039210343 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.

Keywords

n/a --- Fresnel lenses --- Electro sinter forging --- micro-injection moulding --- surface roughness --- charge relaxation time --- optimization --- gratings --- plasma-electrolytic polishing --- micro structures replication --- micro-grinding --- electrical discharge machining --- injection molding --- quality control --- commercial control hardware --- electrical current --- damping --- process monitoring --- fingerprints --- impact analysis --- current monitoring --- process control --- quality assurance --- surface integrity --- microfabrication --- microinjection moulding --- electro chemical machining --- superhydrophobic surface --- surface modification --- haptic actuator --- electrical discharge machining (EDM) --- surface morphology --- inline metrology --- optical quality control --- finishing --- flow length --- precision injection molding --- laser ablation --- micro metrology --- Halbach linear motor --- 2-step analysis --- computer holography --- PeP --- satellite drop --- process fingerprint --- materials characterisation --- current density --- micro drilling --- multi-spectral imaging --- lithography --- manufacturing signature --- artificial compound eye --- electrohydrodynamic jet printing --- ECM --- positioning platform --- diffractive optics --- bioceramics --- resistance sintering --- uncertainty budget --- product fingerprint --- confocal microscopy --- spectral splitting --- dental implant --- desirability function --- injection compression molding --- electrochemical machining (ECM) --- high strain rate effect --- process fingerprints


Book
Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book.


Book
Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book.


Book
Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book.


Book
Frontiers in Ultra-Precision Machining
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies.

Keywords

Technology: general issues --- History of engineering & technology --- fused silica --- small-scale damage --- magnetorheological removing method --- combined repairing process --- evolution law --- diamond grinding --- single crystal silicon --- subsurface damage --- crystal orientation --- spherical shell --- thin-walled part --- wall-thickness --- benchmark coincidence --- data processing --- ultra-precision machining --- computer-controlled optical surfacing --- dwell time algorithm --- removal function --- elementary approximation --- atmospheric pressure plasma jet --- continuous phase plate --- surface topography --- high accuracy and efficiency --- polar microstructures --- optimization --- machining parameters --- cutting strategy --- flexible grinding --- shear thickening fluid --- cluster effect --- high-shear low-pressure --- aluminum --- ion beam sputtering --- morphology evolution --- molecular dynamics --- electrochemical discharge machining (ECDM) --- material removal rate (MRR) --- electrode wear ratio (EWR) --- overcut (OC) --- electrical properties --- tool material --- diamond tool --- single-point diamond turning --- lubricant --- ferrous metal --- electrorheological polishing --- polishing tool --- roughness --- integrated electrode --- Nano-ZrO2 ceramics --- ultra-precision grinding --- surface residual material --- surface quality --- three-dimensional surface roughness --- reversal method --- eccentricity --- piezoelectric actuator --- flange --- dynamic modeling --- surface characterization --- cutting forces --- tool servo diamond cutting --- data-dependent systems --- surface topography variation --- microstructured surfaces --- microlens array --- three-dimensional elliptical vibration cutting --- piezoelectric hysteresis --- Bouc–Wen model --- flower pollination algorithm --- dynamic switching probability strategy --- parameter identification --- atom probe tomography (APT) --- single-wedge --- lift-out --- focused ion beam (FIB) --- Al/Ni multilayers --- vibration-assisted electrochemical machining (ECM) --- blisk --- narrow channel --- high aspect ratio --- multi-physics coupling simulation --- machining stability --- n/a --- Bouc-Wen model


Book
Frontiers in Ultra-Precision Machining
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies.

Keywords

Technology: general issues --- History of engineering & technology --- fused silica --- small-scale damage --- magnetorheological removing method --- combined repairing process --- evolution law --- diamond grinding --- single crystal silicon --- subsurface damage --- crystal orientation --- spherical shell --- thin-walled part --- wall-thickness --- benchmark coincidence --- data processing --- ultra-precision machining --- computer-controlled optical surfacing --- dwell time algorithm --- removal function --- elementary approximation --- atmospheric pressure plasma jet --- continuous phase plate --- surface topography --- high accuracy and efficiency --- polar microstructures --- optimization --- machining parameters --- cutting strategy --- flexible grinding --- shear thickening fluid --- cluster effect --- high-shear low-pressure --- aluminum --- ion beam sputtering --- morphology evolution --- molecular dynamics --- electrochemical discharge machining (ECDM) --- material removal rate (MRR) --- electrode wear ratio (EWR) --- overcut (OC) --- electrical properties --- tool material --- diamond tool --- single-point diamond turning --- lubricant --- ferrous metal --- electrorheological polishing --- polishing tool --- roughness --- integrated electrode --- Nano-ZrO2 ceramics --- ultra-precision grinding --- surface residual material --- surface quality --- three-dimensional surface roughness --- reversal method --- eccentricity --- piezoelectric actuator --- flange --- dynamic modeling --- surface characterization --- cutting forces --- tool servo diamond cutting --- data-dependent systems --- surface topography variation --- microstructured surfaces --- microlens array --- three-dimensional elliptical vibration cutting --- piezoelectric hysteresis --- Bouc–Wen model --- flower pollination algorithm --- dynamic switching probability strategy --- parameter identification --- atom probe tomography (APT) --- single-wedge --- lift-out --- focused ion beam (FIB) --- Al/Ni multilayers --- vibration-assisted electrochemical machining (ECM) --- blisk --- narrow channel --- high aspect ratio --- multi-physics coupling simulation --- machining stability --- n/a --- Bouc-Wen model


Book
Frontiers in Ultra-Precision Machining
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies.

Keywords

fused silica --- small-scale damage --- magnetorheological removing method --- combined repairing process --- evolution law --- diamond grinding --- single crystal silicon --- subsurface damage --- crystal orientation --- spherical shell --- thin-walled part --- wall-thickness --- benchmark coincidence --- data processing --- ultra-precision machining --- computer-controlled optical surfacing --- dwell time algorithm --- removal function --- elementary approximation --- atmospheric pressure plasma jet --- continuous phase plate --- surface topography --- high accuracy and efficiency --- polar microstructures --- optimization --- machining parameters --- cutting strategy --- flexible grinding --- shear thickening fluid --- cluster effect --- high-shear low-pressure --- aluminum --- ion beam sputtering --- morphology evolution --- molecular dynamics --- electrochemical discharge machining (ECDM) --- material removal rate (MRR) --- electrode wear ratio (EWR) --- overcut (OC) --- electrical properties --- tool material --- diamond tool --- single-point diamond turning --- lubricant --- ferrous metal --- electrorheological polishing --- polishing tool --- roughness --- integrated electrode --- Nano-ZrO2 ceramics --- ultra-precision grinding --- surface residual material --- surface quality --- three-dimensional surface roughness --- reversal method --- eccentricity --- piezoelectric actuator --- flange --- dynamic modeling --- surface characterization --- cutting forces --- tool servo diamond cutting --- data-dependent systems --- surface topography variation --- microstructured surfaces --- microlens array --- three-dimensional elliptical vibration cutting --- piezoelectric hysteresis --- Bouc–Wen model --- flower pollination algorithm --- dynamic switching probability strategy --- parameter identification --- atom probe tomography (APT) --- single-wedge --- lift-out --- focused ion beam (FIB) --- Al/Ni multilayers --- vibration-assisted electrochemical machining (ECM) --- blisk --- narrow channel --- high aspect ratio --- multi-physics coupling simulation --- machining stability --- n/a --- Bouc-Wen model

Listing 1 - 7 of 7
Sort by