Narrow your search
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
The experimental self
Author:
ISBN: 022636884X 9780226368849 9780226351360 022635136X Year: 2016 Publisher: Chicago London

Loading...
Export citation

Choose an application

Bookmark

Abstract

What did it mean to be a scientist before the profession itself existed? Jan Golinski finds an answer in the remarkable career of Humphry Davy, the foremost chemist of his day and one of the most distinguished British men of science of the nineteenth century. Originally a country boy from a modest background, Davy was propelled by his scientific accomplishments to a knighthood and the presidency of the Royal Society. An enigmatic figure to his contemporaries, Davy has continued to elude the efforts of biographers to classify him: poet, friend to Coleridge and Wordsworth, author of travel narratives and a book on fishing, chemist and inventor of the miners' safety lamp. What are we to make of such a man? In The Experimental Self, Golinski argues that Davy's life is best understood as a prolonged process of self-experimentation. He follows Davy from his youthful enthusiasm for physiological experiment through his self-fashioning as a man of science in a period when the path to a scientific career was not as well-trodden as it is today. What emerges is a portrait of Davy as a creative fashioner of his own identity through a lifelong series of experiments in selfhood.


Book
Membrane-bound enzymes
Authors: ---
ISBN: 0306390140 148990414X 1461446163 Year: 1971 Publisher: New York (N.Y.): Plenum


Book
Ringer solutions and physiological salines
Author:
ISBN: 0856080179 9780856080173 Year: 1975 Publisher: Bristol Wright-Scientechnica


Book
Membranes, ions and impulses : a chapter of classical biophysics
Author:
ISBN: 0520002512 9780520002517 Year: 1972 Volume: 1 Publisher: Berkeley (CA) : University of California Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

General biophysics --- Biomembranes --- SYNAPTIC TRANSMISSION --- Cell Membrane --- Membrane Potentials --- Cell Membrane. --- Membrane Potentials. --- Synaptic Transmission. --- 577.3 --- Transmission, Neural --- Transmission, Synaptic --- Neural Transmission --- Neurotransmission --- Neural Conduction --- Synapses --- Resting Membrane Potential --- Transmembrane Electrical Potential Difference --- Transmembrane Potential Difference --- Resting Potentials --- Transmembrane Potentials --- Difference, Transmembrane Potential --- Differences, Transmembrane Potential --- Membrane Potential --- Membrane Potential, Resting --- Membrane Potentials, Resting --- Potential Difference, Transmembrane --- Potential Differences, Transmembrane --- Potential, Membrane --- Potential, Resting --- Potential, Transmembrane --- Potentials, Membrane --- Potentials, Resting --- Potentials, Transmembrane --- Resting Membrane Potentials --- Resting Potential --- Transmembrane Potential --- Transmembrane Potential Differences --- Cytoplasmic Membrane --- Plasma Membrane --- Cell Membranes --- Cytoplasmic Membranes --- Membrane, Cell --- Membrane, Cytoplasmic --- Membrane, Plasma --- Membranes, Cell --- Membranes, Cytoplasmic --- Membranes, Plasma --- Plasma Membranes --- Membranes --- Physical and physicochemical bases of life. Biophysics. Biophysical chemistry in general --- 577.3 Physical and physicochemical bases of life. Biophysics. Biophysical chemistry in general --- Delta Psi --- Synaptic Transmission --- Cell Membrane - congresses --- Membrane Potentials - congresses --- Ions, echanges d'

Membranes, ions, and impulses
Authors: --- ---
ISBN: 0306345056 1468426397 1468426370 Year: 1976 Publisher: Bethesda [Md. ] FASEB

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Biomembranes --- Membrane Potentials. --- Synaptic Transmission. --- -576.352 --- Transmission, Neural --- Transmission, Synaptic --- Neural Transmission --- Neural Conduction --- Synapses --- Resting Membrane Potential --- Transmembrane Electrical Potential Difference --- Transmembrane Potential Difference --- Resting Potentials --- Transmembrane Potentials --- Difference, Transmembrane Potential --- Differences, Transmembrane Potential --- Membrane Potential --- Membrane Potential, Resting --- Membrane Potentials, Resting --- Potential Difference, Transmembrane --- Potential Differences, Transmembrane --- Potential, Membrane --- Potential, Resting --- Potential, Transmembrane --- Potentials, Membrane --- Potentials, Resting --- Potentials, Transmembrane --- Resting Membrane Potentials --- Resting Potential --- Transmembrane Potential --- Transmembrane Potential Differences --- Endomitosis. Endoreproduction. Duplication of chromosomes without cell or nuclear division --- 576.352 Endomitosis. Endoreproduction. Duplication of chromosomes without cell or nuclear division --- Cell membranes --- Neural transmission --- Cell Membrane --- Membrane Potentials --- Synaptic Transmission --- 576.352 --- Neurotransmission --- Cytoplasmic Membrane --- Plasma Membrane --- Cell Membranes --- Cytoplasmic Membranes --- Membrane, Cell --- Membrane, Cytoplasmic --- Membrane, Plasma --- Membranes, Cell --- Membranes, Cytoplasmic --- Membranes, Plasma --- Plasma Membranes --- Membranes --- Congresses --- Conferences - Meetings --- Cell membrane - Congresses. --- Electric conductivity - Congresses. --- Membrane potentials - Congresses. --- Delta Psi

Channels and noise in epithelial tissues
Authors: ---
ISBN: 0121533379 9786611713232 1281713236 0080585086 Year: 1990 Publisher: London New York Toronto Academic Press

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

Technology: general issues --- History of engineering & technology --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron-gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron-gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG)


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

Technology: general issues --- History of engineering & technology --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron–gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- n/a --- iron-gallium


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron–gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- n/a --- iron-gallium


Book
Fluid Flow in Fractured Porous Media,
Authors: ---
ISBN: 3039214748 303921473X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

deformation feature --- minerals --- microstructure --- mixing --- permeability --- gas concentration --- water–rock interaction --- loose gangue backfill material --- unified pipe-network method --- fracture --- roof-cutting resistance --- crack --- similar-material --- movable fluid --- gob-side entry retaining (GER) --- rock-soil mechanics --- bed separation --- orthogonal tests --- charge separation --- water soaked height --- fluid flow in reclaimed soil --- laboratory experiment --- longwall mining --- grading broken gangue --- MIP --- elastic modulus --- effective stress --- permeability coefficient --- mixer --- naturally fracture --- SEM --- microstructure characteristics --- artificial joint rock --- fractured rock --- strata movement --- conservative solute --- particle velocity --- dry-wet cycles --- hydraulic fractures --- numerical calculation --- mechanical behaviors --- normalized conductivity-influence function --- fractured porous rock mass --- PPCZ --- segmented grouting --- non-aqueous phase liquid --- intelligent torque rheometer --- numerical analysis --- temperature --- unsaturated soil --- uniaxial compressive strength --- mine shaft --- coalbed methane (CBM) --- nonlinear flow in fractured porous media --- similar simulation --- forecasting --- tight sandstones --- oriented perforation --- hydro-mechanical coupling --- constant normal stiffness conditions --- cohesive soils --- layered progressive grouting --- chemical grouts --- grain size of sand --- Darcy’s law --- soft coal masses --- hydro-power --- cyclic heating and cooling --- cohesive element method --- cement-based paste discharge --- tectonically deformed coal --- split grouting --- fault water inrush --- filtration effects --- T-stress --- particle flow modeling --- new cementitious material --- strength --- stabilization --- fractured porous medium --- brine concentration --- initial water contained in sand --- XRD --- fracture criteria --- hydraulic conductivity --- roadway deformation --- backfill mining --- adsorption/desorption properties --- pore pressure --- roughness --- cement–silicate grout --- compressive stress --- discrete element method --- dynamic characteristics --- strain-based percolation model --- thermal-hydrological-chemical interactions --- pore distribution characteristics --- transversely isotropic rocks --- nitric acid modification --- disaster-causing mechanism --- CH4 seepage --- crack distribution characteristics --- micro-CT --- relief excavation --- Darcy flow --- hydraulic fracturing --- mixed-form formulation --- propagation --- scanning electron microscope (SEM) images --- propagation pattern --- consolidation process --- rheological deformation --- gas adsorption --- soft filling medium --- ground pressure --- orthogonal ratio test --- rock fracture --- coal seams --- high-steep slope --- interface --- orthogonal test --- stress interference --- physical and mechanical parameters --- fracture propagation --- fluid–solid coupling theory --- coupling model --- surface characteristics --- numerical manifold method --- gas --- lignite --- water inrush prevention --- coupled THM model --- hard and thick magmatic rocks --- Ordos Basin --- porosity --- damage mechanics --- seepage --- degradation mechanism --- high temperature --- visualization system --- bentonite-sand mixtures --- contamination --- conductivity-influence function --- water-rock interaction --- deterioration --- seepage pressure --- glutenite --- adhesion efficiency --- mechanical behavior transition --- bedding plane orientation --- n/a --- enhanced gas recovery --- debris-resisting barriers --- reinforcement mechanism --- on-site monitoring --- geophysical prospecting --- cyclic wetting-drying --- scoops3D --- semi-analytical solution --- enhanced permeability --- management period --- seepage control --- deformation --- Yellow River Embankment --- impeded drainage boundary --- rheological test --- circular closed reservoir --- grout penetration --- viscoelastic fluid --- coal-like material --- paste-like slurry --- floor failure depth --- supercritical CO2 --- gravel --- numerical model --- fractal --- gas-bearing coal --- shear-flow coupled test --- rheological limit strain --- CO2 flooding --- flotation --- goaf --- slope stability --- damage --- coal and gas outburst --- hydraulic fracture --- anisotropy --- high-order --- effluents --- FLAC --- limestone roof --- sandstone --- TG/DTG --- Xinjiang --- two-phase flow --- model experiment --- coal particle --- volumetric strain --- failure mode --- land reclamation --- sandstone and mudstone particles --- contiguous seams --- CO2 geological storage --- numerical simulation --- geogrid --- stress relief --- optimum proportioning --- roadside backfill body (RBB) --- pervious concrete --- mudstone --- hydraulic fracture network --- grouted sand --- fractal pore characteristics --- refraction law --- segmented rheological model --- ductile failure --- heterogeneity --- flow law --- fracture closure --- coal measures sandstone --- tight sandstone gas reservoirs --- gob behaviors --- water-dripping roadway --- creep characteristics --- internal erosion --- warning levels of fault water inrush --- hydraulic aperture --- bolt support --- discontinuous natural fracture --- microscopic morphology --- critical hydraulic gradient --- mixed mode fracture resistance --- differential settlement --- alternate strata --- finite element method --- crushing ratio --- chloride --- glauberite cavern for storing oil &amp --- macroscopic mechanical behaviors --- collision angle --- adsorption performance --- failure mechanism --- mechanical properties --- transmissivity --- damage evolution --- gas fracturing --- multitude parameters --- deviatoric stress --- Jiaohe --- coal --- soil properties --- acoustic emission --- pore structure --- grouting experiment --- concrete --- confining pressures --- green mining --- gas drainage --- fluid viscosity --- compression deformation --- Unsaturation --- adsorption–desorption --- seepage-creep --- constitutive model --- soil particle size --- Pseudo Steady-State (PPS) constant --- soil–structure interface --- debris flow --- fracture grouting --- initial settlement position --- regression equation --- electrical potential --- secondary fracture --- surrounding rock --- solid backfill coal mining --- time variation --- excess pore-pressures --- finite-conductivity fracture --- permeability characteristics --- rainfall-unstable soil coupling mechanism(R-USCM) --- shaft lining --- Darcy's law --- cement-silicate grout --- fluid-solid coupling theory --- adsorption-desorption --- soil-structure interface

Listing 1 - 10 of 11 << page
of 2
>>
Sort by