Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
MAMP-triggered immunity --- effector-triggered immunity --- salicyclic acid --- reactive oxygen species
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Botany & plant sciences --- MAMP-triggered immunity --- effector-triggered immunity --- salicyclic acid --- reactive oxygen species
Choose an application
Plant viruses cause many of the most important diseases threatening crops worldwide. Over the last quarter of a century, an increasing number of plant viruses have emerged in various parts of the world, especially in the tropics and subtropics. As is generally observed for plant viruses, most of the emerging viruses are transmitted horizontally by biological vectors, mainly insects. Reverse genetics using infectious clones—available for many plant viruses—has been used for identification of viral determinants involved in virus–host and virus–vector interactions. Although many studies have identified a number of factors involved in disease development and transmission, the precise mechanisms are unknown for most of the virus–plant–vector combinations. In most cases, the diverse outcomes resulting from virus–virus interactions are poorly understood. Although significant advances have been made towards understand the mechanisms involved in plant resistance to viruses, we are far from being able to apply this knowledge to protect cultivated plants from the all viral threats.The aim of this Special Issue was to provide a platform for researchers interested in plant virology to share their recent results. To achieve this, we invited the plant virology community to submit research articles, short communications and reviews related to the various aspects of plant virology: ecology, virus–plant host interactions, virus–vector interactions, virus–virus interactions, and control strategies. This issue contains some of the best current research in plant virology.
whitefly --- begomovirus --- Vta1 --- virus transmission --- coat proteins --- membrane association --- topology --- cilevirus --- movement protein --- p29 capsid protein --- barley yellow dwarf virus --- BYDV --- wheat --- barley --- yield loss --- vectors --- aphids --- persistent virus --- Amalgaviridae --- synergism --- antagonism --- vsiRNAs --- miRNAs --- mixed-infections --- Arabidopsis thaliana --- Cucumber mosaic virus --- genome-wide association studies --- plant–virus interaction --- seed transmission --- virulence --- callose --- coat protein --- plasmodesmata --- triple gene block --- viral suppressor --- virus movement --- virus replication complex --- TYLCD --- TYLCV --- tomato --- Solanum lycopersicum --- disease resistance --- plant breeding --- PAMP-triggered immunity --- effector-triggered immunity --- RNA silencing --- viral suppressors --- NIK1 --- PTI --- ETI --- geminiviruses --- host jumping --- viral evolution --- trade-off --- plant virus --- RNA virus --- potyvirus --- Plum pox virus --- VPg --- eIF4E --- high-throughput sequencing --- bioinformatics --- detection --- discovery --- MinION --- nanopore sequencing --- rolling circle amplification --- viral metagenomics --- CRESS DNA --- capulavirus --- homopolymer --- Begomovirus --- cucumber --- mechanical inoculation --- real-time PCR --- viral load --- QTLs --- resistance --- Geminiviridae --- sweepoviruses --- DNA satellites --- Deltasatellite --- helper virus range --- transreplication --- high-throughput sequencing (HTS) --- virus --- dsRNA --- total RNA --- OLV1 --- LRNV --- ToFBV --- ASGV --- host adaptation --- virus evolution --- n/a --- plant-virus interaction
Choose an application
Plant viruses cause many of the most important diseases threatening crops worldwide. Over the last quarter of a century, an increasing number of plant viruses have emerged in various parts of the world, especially in the tropics and subtropics. As is generally observed for plant viruses, most of the emerging viruses are transmitted horizontally by biological vectors, mainly insects. Reverse genetics using infectious clones—available for many plant viruses—has been used for identification of viral determinants involved in virus–host and virus–vector interactions. Although many studies have identified a number of factors involved in disease development and transmission, the precise mechanisms are unknown for most of the virus–plant–vector combinations. In most cases, the diverse outcomes resulting from virus–virus interactions are poorly understood. Although significant advances have been made towards understand the mechanisms involved in plant resistance to viruses, we are far from being able to apply this knowledge to protect cultivated plants from the all viral threats.The aim of this Special Issue was to provide a platform for researchers interested in plant virology to share their recent results. To achieve this, we invited the plant virology community to submit research articles, short communications and reviews related to the various aspects of plant virology: ecology, virus–plant host interactions, virus–vector interactions, virus–virus interactions, and control strategies. This issue contains some of the best current research in plant virology.
Research & information: general --- Biology, life sciences --- whitefly --- begomovirus --- Vta1 --- virus transmission --- coat proteins --- membrane association --- topology --- cilevirus --- movement protein --- p29 capsid protein --- barley yellow dwarf virus --- BYDV --- wheat --- barley --- yield loss --- vectors --- aphids --- persistent virus --- Amalgaviridae --- synergism --- antagonism --- vsiRNAs --- miRNAs --- mixed-infections --- Arabidopsis thaliana --- Cucumber mosaic virus --- genome-wide association studies --- plant-virus interaction --- seed transmission --- virulence --- callose --- coat protein --- plasmodesmata --- triple gene block --- viral suppressor --- virus movement --- virus replication complex --- TYLCD --- TYLCV --- tomato --- Solanum lycopersicum --- disease resistance --- plant breeding --- PAMP-triggered immunity --- effector-triggered immunity --- RNA silencing --- viral suppressors --- NIK1 --- PTI --- ETI --- geminiviruses --- host jumping --- viral evolution --- trade-off --- plant virus --- RNA virus --- potyvirus --- Plum pox virus --- VPg --- eIF4E --- high-throughput sequencing --- bioinformatics --- detection --- discovery --- MinION --- nanopore sequencing --- rolling circle amplification --- viral metagenomics --- CRESS DNA --- capulavirus --- homopolymer --- Begomovirus --- cucumber --- mechanical inoculation --- real-time PCR --- viral load --- QTLs --- resistance --- Geminiviridae --- sweepoviruses --- DNA satellites --- Deltasatellite --- helper virus range --- transreplication --- high-throughput sequencing (HTS) --- virus --- dsRNA --- total RNA --- OLV1 --- LRNV --- ToFBV --- ASGV --- host adaptation --- virus evolution --- whitefly --- begomovirus --- Vta1 --- virus transmission --- coat proteins --- membrane association --- topology --- cilevirus --- movement protein --- p29 capsid protein --- barley yellow dwarf virus --- BYDV --- wheat --- barley --- yield loss --- vectors --- aphids --- persistent virus --- Amalgaviridae --- synergism --- antagonism --- vsiRNAs --- miRNAs --- mixed-infections --- Arabidopsis thaliana --- Cucumber mosaic virus --- genome-wide association studies --- plant-virus interaction --- seed transmission --- virulence --- callose --- coat protein --- plasmodesmata --- triple gene block --- viral suppressor --- virus movement --- virus replication complex --- TYLCD --- TYLCV --- tomato --- Solanum lycopersicum --- disease resistance --- plant breeding --- PAMP-triggered immunity --- effector-triggered immunity --- RNA silencing --- viral suppressors --- NIK1 --- PTI --- ETI --- geminiviruses --- host jumping --- viral evolution --- trade-off --- plant virus --- RNA virus --- potyvirus --- Plum pox virus --- VPg --- eIF4E --- high-throughput sequencing --- bioinformatics --- detection --- discovery --- MinION --- nanopore sequencing --- rolling circle amplification --- viral metagenomics --- CRESS DNA --- capulavirus --- homopolymer --- Begomovirus --- cucumber --- mechanical inoculation --- real-time PCR --- viral load --- QTLs --- resistance --- Geminiviridae --- sweepoviruses --- DNA satellites --- Deltasatellite --- helper virus range --- transreplication --- high-throughput sequencing (HTS) --- virus --- dsRNA --- total RNA --- OLV1 --- LRNV --- ToFBV --- ASGV --- host adaptation --- virus evolution
Listing 1 - 5 of 5 |
Sort by
|