Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The cancer stem cell (CSC) paradigm represents one of the most prominent breakthroughs of the last decades in tumor biology. CSCs are that subpopulation within a tumor that can survive conventional therapies and as a consequence are able to fuel tumor recurrence. Nevertheless, the biological characteristics of CSCs and even their existence, remain the main topic among tumor biologists debates. The difficulty in achieving a better definition of CSC biology may actually be explained by the plasticity of such a cell subpopulation. Indeed, the emerging view is that CSCs represent a dynamic “state” of tumor cells that can acquire stemness-related properties under specific circumstances, rather than referring to a well-defined group of cells. Regardless of their origin, it is clear that designing novel antitumor treatments based on the eradication of CSCs will only be possible upon unraveling the biological mechanisms that underlie their pathogenic role in tumor progression and therapy resistance. The Special Issue on “New aspects of cancer stem cell biology: implications for innovative therapies” aims at highlighting recent insights into CSC features that can make them an attractive target for novel therapeutic strategies.
Cadherin 11 --- WNT signaling --- β-catenin --- cancer stem cells --- TNBC --- early breast cancer --- bevacizumab --- neoadjuvant chemotherapy --- ALDH1 --- solid cancer --- chemo-resistance --- HDAC inhibitors --- head and neck squamous cell carcinoma --- SRC --- dasatinib --- saracatinib --- EC-8042 --- Ovarian cancer --- Wnt signaling --- tumor progression --- therapy resistance --- exosomes --- oral cancer risk --- oral epithelial dysplasia --- SOX2 --- immunohistochemistry --- oral squamous cell carcinoma --- genome-wide --- transcriptome --- lung cancer --- ATAC-seq --- RNA-seq --- CSCs --- NSCLC --- B4GALT1 --- LUAD --- breast cancer --- lipid --- metabolism --- therapeutic resistance --- bowel cancer --- organoid --- tumoroid --- colorectal --- colon --- stem cell --- chemotherapy resistance --- ovarian cancer --- cancer stem cell --- genetic heterogeneity --- SNP array --- L1CAM --- chemoresistance --- epithelial-mesenchymal transition --- cancer therapy --- cell adhesion molecule
Choose an application
The cancer stem cell (CSC) paradigm represents one of the most prominent breakthroughs of the last decades in tumor biology. CSCs are that subpopulation within a tumor that can survive conventional therapies and as a consequence are able to fuel tumor recurrence. Nevertheless, the biological characteristics of CSCs and even their existence, remain the main topic among tumor biologists debates. The difficulty in achieving a better definition of CSC biology may actually be explained by the plasticity of such a cell subpopulation. Indeed, the emerging view is that CSCs represent a dynamic “state” of tumor cells that can acquire stemness-related properties under specific circumstances, rather than referring to a well-defined group of cells. Regardless of their origin, it is clear that designing novel antitumor treatments based on the eradication of CSCs will only be possible upon unraveling the biological mechanisms that underlie their pathogenic role in tumor progression and therapy resistance. The Special Issue on “New aspects of cancer stem cell biology: implications for innovative therapies” aims at highlighting recent insights into CSC features that can make them an attractive target for novel therapeutic strategies.
Research & information: general --- Biology, life sciences --- Cadherin 11 --- WNT signaling --- β-catenin --- cancer stem cells --- TNBC --- early breast cancer --- bevacizumab --- neoadjuvant chemotherapy --- ALDH1 --- solid cancer --- chemo-resistance --- HDAC inhibitors --- head and neck squamous cell carcinoma --- SRC --- dasatinib --- saracatinib --- EC-8042 --- Ovarian cancer --- Wnt signaling --- tumor progression --- therapy resistance --- exosomes --- oral cancer risk --- oral epithelial dysplasia --- SOX2 --- immunohistochemistry --- oral squamous cell carcinoma --- genome-wide --- transcriptome --- lung cancer --- ATAC-seq --- RNA-seq --- CSCs --- NSCLC --- B4GALT1 --- LUAD --- breast cancer --- lipid --- metabolism --- therapeutic resistance --- bowel cancer --- organoid --- tumoroid --- colorectal --- colon --- stem cell --- chemotherapy resistance --- ovarian cancer --- cancer stem cell --- genetic heterogeneity --- SNP array --- L1CAM --- chemoresistance --- epithelial-mesenchymal transition --- cancer therapy --- cell adhesion molecule
Choose an application
The analysis of circulating tumor cells (CTCs) as a real-time liquid biopsy approach can be used to obtain new insights into metastasis biology, and as companion diagnostics to improve the stratification of therapies and to obtain insights into the therapy-induced selection of cancer cells. In this book, we will cover all the different facets of CTCs to assemble a huge corpus of knowledge on cancer dissemination: technologies for their enrichment, detection, and characterization; their analysis at the single-cell level; their journey as CTC microemboli; their clinical relevance; their biology with the epithelial-to-mesenchymal transition (EMT); their stem-cell properties; their potential to initiate metastasis at distant sites; their ex vivo expansion; and their escape from the immune system.
n/a --- FOLFIRINOX --- immunofluorescence imaging --- AR-V7 --- circulating tumour cells --- chemoradioresistance --- CTC-based treatment decisions --- rVAR2 --- immunophenotyping --- immune system --- CellSearch® --- flow cytometry --- clinical trials --- circulating tumor DNA --- synaptophysin --- stem cells --- colorectal cancer --- melanoma --- CTC biology --- platelets --- AR --- CTC capture technology --- castration resistant prostate cancer (CRPC) --- PD-L1 expression --- rovalpituzumab tesirine --- HMB-45 --- thymidylate synthase --- ctDNA --- tumor cell dissemination --- solid cancers --- metastasis --- locally advanced rectal cancer --- miRNA --- epithelial-to-mesenchymal transition (EMT) --- NSCLC --- tumor biomarkers --- tumor stem cells --- circulating tumor cells --- major histocompatibility complex class I (MHCI) --- bone marrow --- heterogeneity --- cerebrospinal liquid biopsy --- fish --- glioma --- in vivo flow cytometry --- colorectal surgery --- CellSearch --- single-cell analysis --- disseminated tumor cells --- EasyCount slides --- microsatellite instability --- circulating plasma cells --- circulating leukemia cells --- ARV7 --- SLUG --- androgen receptor --- metastatic colorectal cancer --- leukocyte-derived extracellular vesicles --- prostate cancer (PCa) --- neutrophils --- liquid biopsy --- enzalutamide --- CD133 --- enrichment and detection technologies --- biomarkers --- immune checkpoint inhibitors --- biomarker --- RAD23B --- microbiome --- integrin B1 --- ACCEPT --- emboli --- small-cell lung carcinoma --- EPISPOT --- microfluidics --- early breast cancer --- circulating tumor cells (CTC) --- tumor-initiating cells (TICs) --- immunomodulation --- xenograft models --- CTC-derived xenografts --- malaria --- circulating tumor cells (CTCs) --- clinical utility --- exosomes --- liquid surgery --- ctRNA --- CTCs --- epithelial–mesenchymal transition --- targeted therapy --- hematological cells --- gene expression analysis --- hepatocellular carcinoma (HCC) --- breast cancer --- EpCAM enrichment --- prostate cancer --- CTC --- abiraterone --- fibronectin --- CTC-derived ex vivo models --- CTMat --- chromogranin A --- CTM --- exosome --- epithelial-mesenchymal transition
Listing 1 - 3 of 3 |
Sort by
|