Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (3)

2020 (1)

Listing 1 - 4 of 4
Sort by

Book
High Performance Functional Bio-based Polymers for Skin-contact Products
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Beauty masks, diapers, wound dressings, wipes, protective clothes and biomedical products: all these high-value and/or large-volume products must be highly compatible with human skin and they should have specific functional properties, such as anti-microbial, anti-inflammatory and anti-oxidant properties. They are currently partially or totally produced using fossil-based sources, with evident issues linked to their end of life, as their waste generates an increasing environmental concern. On the contrary, biopolymers and active biomolecules from biobased sources could be used to produce new materials that are highly compatible with the skin and also biodegradable. The final products can be obtained by exploiting safe and smart nanotechnologies such as the extrusion of bionanocomposites and electrospinning/electrospray, as well as innovative surface modification and control methodologies. For all these reasons, recently, many researchers, such as those involved in the European POLYBIOSKIN project activities, have been working in the field of biomaterials with anti-microbial, anti-inflammatory and anti-oxidant properties, as well as biobased materials which are renewable and biodegradable. The present book gathered research and review papers dedicated to materials and technologies for high-performance products where the attention paid to health and environmental impact is efficiently integrated, considering both the skin-compatibility of the selected materials and their source/end of life.


Book
High Performance Functional Bio-based Polymers for Skin-contact Products
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Beauty masks, diapers, wound dressings, wipes, protective clothes and biomedical products: all these high-value and/or large-volume products must be highly compatible with human skin and they should have specific functional properties, such as anti-microbial, anti-inflammatory and anti-oxidant properties. They are currently partially or totally produced using fossil-based sources, with evident issues linked to their end of life, as their waste generates an increasing environmental concern. On the contrary, biopolymers and active biomolecules from biobased sources could be used to produce new materials that are highly compatible with the skin and also biodegradable. The final products can be obtained by exploiting safe and smart nanotechnologies such as the extrusion of bionanocomposites and electrospinning/electrospray, as well as innovative surface modification and control methodologies. For all these reasons, recently, many researchers, such as those involved in the European POLYBIOSKIN project activities, have been working in the field of biomaterials with anti-microbial, anti-inflammatory and anti-oxidant properties, as well as biobased materials which are renewable and biodegradable. The present book gathered research and review papers dedicated to materials and technologies for high-performance products where the attention paid to health and environmental impact is efficiently integrated, considering both the skin-compatibility of the selected materials and their source/end of life.


Book
High Performance Functional Bio-based Polymers for Skin-contact Products
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Beauty masks, diapers, wound dressings, wipes, protective clothes and biomedical products: all these high-value and/or large-volume products must be highly compatible with human skin and they should have specific functional properties, such as anti-microbial, anti-inflammatory and anti-oxidant properties. They are currently partially or totally produced using fossil-based sources, with evident issues linked to their end of life, as their waste generates an increasing environmental concern. On the contrary, biopolymers and active biomolecules from biobased sources could be used to produce new materials that are highly compatible with the skin and also biodegradable. The final products can be obtained by exploiting safe and smart nanotechnologies such as the extrusion of bionanocomposites and electrospinning/electrospray, as well as innovative surface modification and control methodologies. For all these reasons, recently, many researchers, such as those involved in the European POLYBIOSKIN project activities, have been working in the field of biomaterials with anti-microbial, anti-inflammatory and anti-oxidant properties, as well as biobased materials which are renewable and biodegradable. The present book gathered research and review papers dedicated to materials and technologies for high-performance products where the attention paid to health and environmental impact is efficiently integrated, considering both the skin-compatibility of the selected materials and their source/end of life.

Keywords

Research & information: general --- pullulan --- biopolymers --- exopolysaccharides --- biodegradation --- biocompatibility --- poly(lactic acid) --- poly(butylene succinate) --- chitin nanofibrils --- starch --- skin compatibility --- anti-microbial --- poly(hydroxyalkanoate) --- biopolyesters --- beauty masks --- releasing --- skin compatible --- polyhydroxyalkanotes --- sugarcane molasses --- antibacterial materials --- essential oils --- coating --- poly(lactide) --- chitin-lignin nanocomplex --- grafting from --- lactide oligomers --- platelet-rich fibrin --- wound healing --- skin wounds --- wound dressing --- hyperspectral imaging --- principal component analysis --- spectroscopy --- chitosan --- partial least squares regression --- nir --- actives substances --- cn-nl/ga --- skin --- antifouling --- antimicrobial --- antiviral --- electrospinning --- breast implant --- ear prosthesis --- biomedical device --- chronic wound --- biopolymer --- bio-based --- surface modification --- nanolignin --- electrospray --- anti-inflammatory --- blends --- PLA --- PHBV --- nanocomposite --- tissue engineering --- biodegradable --- nanofiber --- pullulan --- biopolymers --- exopolysaccharides --- biodegradation --- biocompatibility --- poly(lactic acid) --- poly(butylene succinate) --- chitin nanofibrils --- starch --- skin compatibility --- anti-microbial --- poly(hydroxyalkanoate) --- biopolyesters --- beauty masks --- releasing --- skin compatible --- polyhydroxyalkanotes --- sugarcane molasses --- antibacterial materials --- essential oils --- coating --- poly(lactide) --- chitin-lignin nanocomplex --- grafting from --- lactide oligomers --- platelet-rich fibrin --- wound healing --- skin wounds --- wound dressing --- hyperspectral imaging --- principal component analysis --- spectroscopy --- chitosan --- partial least squares regression --- nir --- actives substances --- cn-nl/ga --- skin --- antifouling --- antimicrobial --- antiviral --- electrospinning --- breast implant --- ear prosthesis --- biomedical device --- chronic wound --- biopolymer --- bio-based --- surface modification --- nanolignin --- electrospray --- anti-inflammatory --- blends --- PLA --- PHBV --- nanocomposite --- tissue engineering --- biodegradable --- nanofiber


Book
Biomedical Applications of Nanoparticles
Author:
ISBN: 3039285432 3039285424 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides an overview of the design and physico-chemical properties of nanoparticles developed for biomedical applications such as targeting and detection of pathologies, nanovectorization of drugs, radiosensitization, metal detection, and nanocomposite implants. The considerations necessary when developing a new nanomedicine are also developed, including toxicological investigation, biodistribution, and efficacy. This book provides an accurate and current representation of the field by addressing the promises and hurdles of nanomedicine via 20 different pertinent studies. Covering a wide range of areas, this book is an excellent partner for physico-chemists, doctors, pharmacologists, and biochemists working on nanosciences dedicated to medicine, both in industry and in academia.

Keywords

alginate --- chitosan --- gold nanoparticles --- biochemical mechanism --- cancer imaging --- lignin --- thioredoxin reductase --- antimiR --- nanoparticles --- surface enhanced Raman scattering --- biomedical applications --- protein --- multidrug resistant (MDR) microorganisms --- nano-bio interaction --- curcumin --- autophagy --- MIC --- nanoparticle --- biocompatible --- gene delivery --- self-assembly --- glioblastoma --- dual functional imaging nanoprobe --- SERS --- antibiotics --- biogenic nanoparticles --- Hg2+ ions detection --- antimicrobial --- histamine --- layer-by-layer --- dihydroartemisinin --- computational electromagnetism --- photolysis --- Ag-film --- chitosan nanoparticles --- UiO-66 --- plasma liquid Interactions --- anticancer --- MBC --- nanophotonics --- targeted nanoparticles --- near-infrared --- hybrid Fe-Si nanoparticles --- FTIR --- thermoplastic polymer --- synergism --- prognosis --- medical devices --- silver nanoparticles --- glioma --- plasma --- iron oxide superparamagnetic nanoparticles --- oxidative stress --- mycosynthesis --- membrane integrity --- drug delivery --- nanocomposites --- finite element method --- cell labeling --- in vivo application --- non-thermal plasma --- nanocellulose --- biocompatibility --- liposomes --- nanocarriers --- upconversion nanoparticles --- Candida glabrata --- nanomaterials --- middle ear prosthesis --- short-wave infrared --- cytoreduction surgery --- fibril --- nanostars --- fluorescent nanoparticle --- density functional theory calculations --- cross-link --- mitoxantrone --- heat --- SERS sensor --- Caco2 cells --- apoptosis --- surface-enhanced Raman spectroscopy (SERS) --- MFC --- magnetic nanoparticles --- antibiotic resistance --- laser pyrolysis --- cytotoxicity --- core-shell nanoparticles --- enzyme --- extracellular --- nanomaterial synthesis --- cancer cell targeting --- nanodiamond --- breast cancer --- metal-enhanced fluorescence (MEF) --- PEG --- radiation --- trans-resveratrol derivative --- radiosensitization --- cancer --- surface-enhanced Raman scattering (SERS) --- TEM

Listing 1 - 4 of 4
Sort by