Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Plant viruses cause many of the most important diseases threatening crops worldwide. Over the last quarter of a century, an increasing number of plant viruses have emerged in various parts of the world, especially in the tropics and subtropics. As is generally observed for plant viruses, most of the emerging viruses are transmitted horizontally by biological vectors, mainly insects. Reverse genetics using infectious clones—available for many plant viruses—has been used for identification of viral determinants involved in virus–host and virus–vector interactions. Although many studies have identified a number of factors involved in disease development and transmission, the precise mechanisms are unknown for most of the virus–plant–vector combinations. In most cases, the diverse outcomes resulting from virus–virus interactions are poorly understood. Although significant advances have been made towards understand the mechanisms involved in plant resistance to viruses, we are far from being able to apply this knowledge to protect cultivated plants from the all viral threats.The aim of this Special Issue was to provide a platform for researchers interested in plant virology to share their recent results. To achieve this, we invited the plant virology community to submit research articles, short communications and reviews related to the various aspects of plant virology: ecology, virus–plant host interactions, virus–vector interactions, virus–virus interactions, and control strategies. This issue contains some of the best current research in plant virology.
whitefly --- begomovirus --- Vta1 --- virus transmission --- coat proteins --- membrane association --- topology --- cilevirus --- movement protein --- p29 capsid protein --- barley yellow dwarf virus --- BYDV --- wheat --- barley --- yield loss --- vectors --- aphids --- persistent virus --- Amalgaviridae --- synergism --- antagonism --- vsiRNAs --- miRNAs --- mixed-infections --- Arabidopsis thaliana --- Cucumber mosaic virus --- genome-wide association studies --- plant–virus interaction --- seed transmission --- virulence --- callose --- coat protein --- plasmodesmata --- triple gene block --- viral suppressor --- virus movement --- virus replication complex --- TYLCD --- TYLCV --- tomato --- Solanum lycopersicum --- disease resistance --- plant breeding --- PAMP-triggered immunity --- effector-triggered immunity --- RNA silencing --- viral suppressors --- NIK1 --- PTI --- ETI --- geminiviruses --- host jumping --- viral evolution --- trade-off --- plant virus --- RNA virus --- potyvirus --- Plum pox virus --- VPg --- eIF4E --- high-throughput sequencing --- bioinformatics --- detection --- discovery --- MinION --- nanopore sequencing --- rolling circle amplification --- viral metagenomics --- CRESS DNA --- capulavirus --- homopolymer --- Begomovirus --- cucumber --- mechanical inoculation --- real-time PCR --- viral load --- QTLs --- resistance --- Geminiviridae --- sweepoviruses --- DNA satellites --- Deltasatellite --- helper virus range --- transreplication --- high-throughput sequencing (HTS) --- virus --- dsRNA --- total RNA --- OLV1 --- LRNV --- ToFBV --- ASGV --- host adaptation --- virus evolution --- n/a --- plant-virus interaction
Choose an application
Plant viruses cause many of the most important diseases threatening crops worldwide. Over the last quarter of a century, an increasing number of plant viruses have emerged in various parts of the world, especially in the tropics and subtropics. As is generally observed for plant viruses, most of the emerging viruses are transmitted horizontally by biological vectors, mainly insects. Reverse genetics using infectious clones—available for many plant viruses—has been used for identification of viral determinants involved in virus–host and virus–vector interactions. Although many studies have identified a number of factors involved in disease development and transmission, the precise mechanisms are unknown for most of the virus–plant–vector combinations. In most cases, the diverse outcomes resulting from virus–virus interactions are poorly understood. Although significant advances have been made towards understand the mechanisms involved in plant resistance to viruses, we are far from being able to apply this knowledge to protect cultivated plants from the all viral threats.The aim of this Special Issue was to provide a platform for researchers interested in plant virology to share their recent results. To achieve this, we invited the plant virology community to submit research articles, short communications and reviews related to the various aspects of plant virology: ecology, virus–plant host interactions, virus–vector interactions, virus–virus interactions, and control strategies. This issue contains some of the best current research in plant virology.
Research & information: general --- Biology, life sciences --- whitefly --- begomovirus --- Vta1 --- virus transmission --- coat proteins --- membrane association --- topology --- cilevirus --- movement protein --- p29 capsid protein --- barley yellow dwarf virus --- BYDV --- wheat --- barley --- yield loss --- vectors --- aphids --- persistent virus --- Amalgaviridae --- synergism --- antagonism --- vsiRNAs --- miRNAs --- mixed-infections --- Arabidopsis thaliana --- Cucumber mosaic virus --- genome-wide association studies --- plant-virus interaction --- seed transmission --- virulence --- callose --- coat protein --- plasmodesmata --- triple gene block --- viral suppressor --- virus movement --- virus replication complex --- TYLCD --- TYLCV --- tomato --- Solanum lycopersicum --- disease resistance --- plant breeding --- PAMP-triggered immunity --- effector-triggered immunity --- RNA silencing --- viral suppressors --- NIK1 --- PTI --- ETI --- geminiviruses --- host jumping --- viral evolution --- trade-off --- plant virus --- RNA virus --- potyvirus --- Plum pox virus --- VPg --- eIF4E --- high-throughput sequencing --- bioinformatics --- detection --- discovery --- MinION --- nanopore sequencing --- rolling circle amplification --- viral metagenomics --- CRESS DNA --- capulavirus --- homopolymer --- Begomovirus --- cucumber --- mechanical inoculation --- real-time PCR --- viral load --- QTLs --- resistance --- Geminiviridae --- sweepoviruses --- DNA satellites --- Deltasatellite --- helper virus range --- transreplication --- high-throughput sequencing (HTS) --- virus --- dsRNA --- total RNA --- OLV1 --- LRNV --- ToFBV --- ASGV --- host adaptation --- virus evolution --- whitefly --- begomovirus --- Vta1 --- virus transmission --- coat proteins --- membrane association --- topology --- cilevirus --- movement protein --- p29 capsid protein --- barley yellow dwarf virus --- BYDV --- wheat --- barley --- yield loss --- vectors --- aphids --- persistent virus --- Amalgaviridae --- synergism --- antagonism --- vsiRNAs --- miRNAs --- mixed-infections --- Arabidopsis thaliana --- Cucumber mosaic virus --- genome-wide association studies --- plant-virus interaction --- seed transmission --- virulence --- callose --- coat protein --- plasmodesmata --- triple gene block --- viral suppressor --- virus movement --- virus replication complex --- TYLCD --- TYLCV --- tomato --- Solanum lycopersicum --- disease resistance --- plant breeding --- PAMP-triggered immunity --- effector-triggered immunity --- RNA silencing --- viral suppressors --- NIK1 --- PTI --- ETI --- geminiviruses --- host jumping --- viral evolution --- trade-off --- plant virus --- RNA virus --- potyvirus --- Plum pox virus --- VPg --- eIF4E --- high-throughput sequencing --- bioinformatics --- detection --- discovery --- MinION --- nanopore sequencing --- rolling circle amplification --- viral metagenomics --- CRESS DNA --- capulavirus --- homopolymer --- Begomovirus --- cucumber --- mechanical inoculation --- real-time PCR --- viral load --- QTLs --- resistance --- Geminiviridae --- sweepoviruses --- DNA satellites --- Deltasatellite --- helper virus range --- transreplication --- high-throughput sequencing (HTS) --- virus --- dsRNA --- total RNA --- OLV1 --- LRNV --- ToFBV --- ASGV --- host adaptation --- virus evolution
Choose an application
Disordered proteins are relatively recent newcomers in protein science. They were first described in detail by Wright and Dyson, in their J. Mol. Biol. paper in 1999. First, it was generally thought for more than a decade that disordered proteins or disordered parts of proteins have different amino acid compositions than folded proteins, and various prediction methods were developed based on this principle. These methods were suitable for distinguishing between the disordered (unstructured) and structured proteins known at that time. In addition, they could predict the site where a folded protein binds to the disordered part of a protein, shaping the latter into a well-defined 3D structure. Recently, however, evidence has emerged for a new type of disordered protein family whose members can undergo coupled folding and binding without the involvement of any folded proteins. Instead, they interact with each other, stabilizing their structure via “mutual synergistic folding” and, surprisingly, they exhibit the same residue composition as the folded protein. Increasingly more examples have been found where disordered proteins interact with non-protein macromolecules, adding to the already large variety of protein–protein interactions. There is also a very new phenomenon when proteins are involved in phase separation, which can represent a weak but functionally important macromolecular interaction. These phenomena are presented and discussed in the chapters of this book.
Research & information: general --- Biology, life sciences --- intrinsically disordered proteins --- epiproteome --- disordered protein platform --- molecular recognition feature --- post-translational modifications --- physiological homeostasis --- stress response --- RIN4 --- p53 --- molecular machines --- intrinsically disordered protein --- membrane-less organelle --- neurodegenerative disease --- p300 HAT acetylation --- post-translational modification --- protein aggregation --- Tau fibrillation --- intrinsically disorder proteins --- disorder-to-order regions --- protein–RNA interactions --- unstructured proteins --- conformational plasticity --- disordered protein --- folding --- ribosomal protein --- spectroscopy --- protein stability --- temperature response --- protein thermostability --- salt bridges --- meta strategy --- dual threshold --- significance voting --- decision tree based artificial neural network --- protein intrinsic disorder --- intrinsic disorder --- intrinsic disorder prediction --- intrinsically disordered region --- protein conformation --- transcriptome --- RNA sequencing --- Microarray --- differentially regulated genes --- gene ontology analysis --- functional analysis --- intrinsically disordered --- structural disorder --- correlated mutations --- co-evolution --- evolutionary couplings --- residue co-variation --- interaction surface --- residue contact network --- dehydron --- homodimer --- hydrogen bond --- inter-subunit interaction --- ion pair --- mutual synergistic folding --- solvent-accessible surface area --- stabilization center --- MLL proteins --- MLL4 --- lncRNA --- HOTAIR --- MEG3 --- leukemia --- histone lysine methyltransferase --- RNA binding --- protein --- hydration --- wide-line 1H NMR --- secretion --- immune --- extracellular --- protein-protein interaction --- structural domain --- evolution --- transcription factors --- DNA-protein interactions --- Sox2 sequential DNA loading --- smFRET --- DNA conformational landscape --- sequential DNA bending --- transcription factor dosage --- oligomer --- N-terminal prion protein --- copper binding --- prion disease mutations --- Nuclear pore complex --- FG-Nups --- phosphorylation --- coarse-grained --- CABS model --- MC simulations --- statistical force fields --- protein structure --- intrinsically disordered proteins (IDPs) --- neurodegenerative diseases --- aggregation --- drugs --- drug discovery --- plant virus --- eIF4E --- VPg --- potyvirus --- molten globule --- fluorescence anisotropy --- protein hydrodynamics
Choose an application
Disordered proteins are relatively recent newcomers in protein science. They were first described in detail by Wright and Dyson, in their J. Mol. Biol. paper in 1999. First, it was generally thought for more than a decade that disordered proteins or disordered parts of proteins have different amino acid compositions than folded proteins, and various prediction methods were developed based on this principle. These methods were suitable for distinguishing between the disordered (unstructured) and structured proteins known at that time. In addition, they could predict the site where a folded protein binds to the disordered part of a protein, shaping the latter into a well-defined 3D structure. Recently, however, evidence has emerged for a new type of disordered protein family whose members can undergo coupled folding and binding without the involvement of any folded proteins. Instead, they interact with each other, stabilizing their structure via “mutual synergistic folding” and, surprisingly, they exhibit the same residue composition as the folded protein. Increasingly more examples have been found where disordered proteins interact with non-protein macromolecules, adding to the already large variety of protein–protein interactions. There is also a very new phenomenon when proteins are involved in phase separation, which can represent a weak but functionally important macromolecular interaction. These phenomena are presented and discussed in the chapters of this book.
intrinsically disordered proteins --- epiproteome --- disordered protein platform --- molecular recognition feature --- post-translational modifications --- physiological homeostasis --- stress response --- RIN4 --- p53 --- molecular machines --- intrinsically disordered protein --- membrane-less organelle --- neurodegenerative disease --- p300 HAT acetylation --- post-translational modification --- protein aggregation --- Tau fibrillation --- intrinsically disorder proteins --- disorder-to-order regions --- protein–RNA interactions --- unstructured proteins --- conformational plasticity --- disordered protein --- folding --- ribosomal protein --- spectroscopy --- protein stability --- temperature response --- protein thermostability --- salt bridges --- meta strategy --- dual threshold --- significance voting --- decision tree based artificial neural network --- protein intrinsic disorder --- intrinsic disorder --- intrinsic disorder prediction --- intrinsically disordered region --- protein conformation --- transcriptome --- RNA sequencing --- Microarray --- differentially regulated genes --- gene ontology analysis --- functional analysis --- intrinsically disordered --- structural disorder --- correlated mutations --- co-evolution --- evolutionary couplings --- residue co-variation --- interaction surface --- residue contact network --- dehydron --- homodimer --- hydrogen bond --- inter-subunit interaction --- ion pair --- mutual synergistic folding --- solvent-accessible surface area --- stabilization center --- MLL proteins --- MLL4 --- lncRNA --- HOTAIR --- MEG3 --- leukemia --- histone lysine methyltransferase --- RNA binding --- protein --- hydration --- wide-line 1H NMR --- secretion --- immune --- extracellular --- protein-protein interaction --- structural domain --- evolution --- transcription factors --- DNA-protein interactions --- Sox2 sequential DNA loading --- smFRET --- DNA conformational landscape --- sequential DNA bending --- transcription factor dosage --- oligomer --- N-terminal prion protein --- copper binding --- prion disease mutations --- Nuclear pore complex --- FG-Nups --- phosphorylation --- coarse-grained --- CABS model --- MC simulations --- statistical force fields --- protein structure --- intrinsically disordered proteins (IDPs) --- neurodegenerative diseases --- aggregation --- drugs --- drug discovery --- plant virus --- eIF4E --- VPg --- potyvirus --- molten globule --- fluorescence anisotropy --- protein hydrodynamics
Choose an application
Disordered proteins are relatively recent newcomers in protein science. They were first described in detail by Wright and Dyson, in their J. Mol. Biol. paper in 1999. First, it was generally thought for more than a decade that disordered proteins or disordered parts of proteins have different amino acid compositions than folded proteins, and various prediction methods were developed based on this principle. These methods were suitable for distinguishing between the disordered (unstructured) and structured proteins known at that time. In addition, they could predict the site where a folded protein binds to the disordered part of a protein, shaping the latter into a well-defined 3D structure. Recently, however, evidence has emerged for a new type of disordered protein family whose members can undergo coupled folding and binding without the involvement of any folded proteins. Instead, they interact with each other, stabilizing their structure via “mutual synergistic folding” and, surprisingly, they exhibit the same residue composition as the folded protein. Increasingly more examples have been found where disordered proteins interact with non-protein macromolecules, adding to the already large variety of protein–protein interactions. There is also a very new phenomenon when proteins are involved in phase separation, which can represent a weak but functionally important macromolecular interaction. These phenomena are presented and discussed in the chapters of this book.
Research & information: general --- Biology, life sciences --- intrinsically disordered proteins --- epiproteome --- disordered protein platform --- molecular recognition feature --- post-translational modifications --- physiological homeostasis --- stress response --- RIN4 --- p53 --- molecular machines --- intrinsically disordered protein --- membrane-less organelle --- neurodegenerative disease --- p300 HAT acetylation --- post-translational modification --- protein aggregation --- Tau fibrillation --- intrinsically disorder proteins --- disorder-to-order regions --- protein–RNA interactions --- unstructured proteins --- conformational plasticity --- disordered protein --- folding --- ribosomal protein --- spectroscopy --- protein stability --- temperature response --- protein thermostability --- salt bridges --- meta strategy --- dual threshold --- significance voting --- decision tree based artificial neural network --- protein intrinsic disorder --- intrinsic disorder --- intrinsic disorder prediction --- intrinsically disordered region --- protein conformation --- transcriptome --- RNA sequencing --- Microarray --- differentially regulated genes --- gene ontology analysis --- functional analysis --- intrinsically disordered --- structural disorder --- correlated mutations --- co-evolution --- evolutionary couplings --- residue co-variation --- interaction surface --- residue contact network --- dehydron --- homodimer --- hydrogen bond --- inter-subunit interaction --- ion pair --- mutual synergistic folding --- solvent-accessible surface area --- stabilization center --- MLL proteins --- MLL4 --- lncRNA --- HOTAIR --- MEG3 --- leukemia --- histone lysine methyltransferase --- RNA binding --- protein --- hydration --- wide-line 1H NMR --- secretion --- immune --- extracellular --- protein-protein interaction --- structural domain --- evolution --- transcription factors --- DNA-protein interactions --- Sox2 sequential DNA loading --- smFRET --- DNA conformational landscape --- sequential DNA bending --- transcription factor dosage --- oligomer --- N-terminal prion protein --- copper binding --- prion disease mutations --- Nuclear pore complex --- FG-Nups --- phosphorylation --- coarse-grained --- CABS model --- MC simulations --- statistical force fields --- protein structure --- intrinsically disordered proteins (IDPs) --- neurodegenerative diseases --- aggregation --- drugs --- drug discovery --- plant virus --- eIF4E --- VPg --- potyvirus --- molten globule --- fluorescence anisotropy --- protein hydrodynamics --- intrinsically disordered proteins --- epiproteome --- disordered protein platform --- molecular recognition feature --- post-translational modifications --- physiological homeostasis --- stress response --- RIN4 --- p53 --- molecular machines --- intrinsically disordered protein --- membrane-less organelle --- neurodegenerative disease --- p300 HAT acetylation --- post-translational modification --- protein aggregation --- Tau fibrillation --- intrinsically disorder proteins --- disorder-to-order regions --- protein–RNA interactions --- unstructured proteins --- conformational plasticity --- disordered protein --- folding --- ribosomal protein --- spectroscopy --- protein stability --- temperature response --- protein thermostability --- salt bridges --- meta strategy --- dual threshold --- significance voting --- decision tree based artificial neural network --- protein intrinsic disorder --- intrinsic disorder --- intrinsic disorder prediction --- intrinsically disordered region --- protein conformation --- transcriptome --- RNA sequencing --- Microarray --- differentially regulated genes --- gene ontology analysis --- functional analysis --- intrinsically disordered --- structural disorder --- correlated mutations --- co-evolution --- evolutionary couplings --- residue co-variation --- interaction surface --- residue contact network --- dehydron --- homodimer --- hydrogen bond --- inter-subunit interaction --- ion pair --- mutual synergistic folding --- solvent-accessible surface area --- stabilization center --- MLL proteins --- MLL4 --- lncRNA --- HOTAIR --- MEG3 --- leukemia --- histone lysine methyltransferase --- RNA binding --- protein --- hydration --- wide-line 1H NMR --- secretion --- immune --- extracellular --- protein-protein interaction --- structural domain --- evolution --- transcription factors --- DNA-protein interactions --- Sox2 sequential DNA loading --- smFRET --- DNA conformational landscape --- sequential DNA bending --- transcription factor dosage --- oligomer --- N-terminal prion protein --- copper binding --- prion disease mutations --- Nuclear pore complex --- FG-Nups --- phosphorylation --- coarse-grained --- CABS model --- MC simulations --- statistical force fields --- protein structure --- intrinsically disordered proteins (IDPs) --- neurodegenerative diseases --- aggregation --- drugs --- drug discovery --- plant virus --- eIF4E --- VPg --- potyvirus --- molten globule --- fluorescence anisotropy --- protein hydrodynamics
Listing 1 - 5 of 5 |
Sort by
|