Narrow your search

Library

FARO (6)

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULiège (6)

VIVES (6)

Vlaams Parlement (6)

More...

Resource type

book (14)


Language

English (14)


Year
From To Submit

2022 (6)

2020 (5)

2019 (3)

Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Book
Immobilized Non-Precious Electrocatalysts for Advanced Energy Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The successful commercialization of advanced energy devices, including fuel cells and solar cells (e.g., dye-sensitized solar cells) is somewhat dependent on the cost, activity and durability of the electrocatalysts. Nowadays, precious metal electrodes are the most widely used. Accordingly, the manufacturing costs are relatively high, which constrains wide application. Recently, some reports have introduced some promising non-precious electrocatalysts to be exploited in both oxidation and reduction reactions. It was concluded that immobilization of the functional material on a proper support can distinctly improve catalytic activity. Moreover, due to the synergetic effect, metallic alloy nanoparticles show very good electrocatalytic activity in this regard. This Special Issue aims to cover the most recent progress and the advances in the field of the immobilized non-precious electrocatalysts. This includes, but is not limited to, non-precious electrocatalysts for alcohol (methanol, ethanol, etc.) oxidation, oxygen reduction reaction and electrolyte reduction in dye-sensitized solar cells.


Book
Mesoporous Metal Oxide Films
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.


Book
Immobilized Non-Precious Electrocatalysts for Advanced Energy Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The successful commercialization of advanced energy devices, including fuel cells and solar cells (e.g., dye-sensitized solar cells) is somewhat dependent on the cost, activity and durability of the electrocatalysts. Nowadays, precious metal electrodes are the most widely used. Accordingly, the manufacturing costs are relatively high, which constrains wide application. Recently, some reports have introduced some promising non-precious electrocatalysts to be exploited in both oxidation and reduction reactions. It was concluded that immobilization of the functional material on a proper support can distinctly improve catalytic activity. Moreover, due to the synergetic effect, metallic alloy nanoparticles show very good electrocatalytic activity in this regard. This Special Issue aims to cover the most recent progress and the advances in the field of the immobilized non-precious electrocatalysts. This includes, but is not limited to, non-precious electrocatalysts for alcohol (methanol, ethanol, etc.) oxidation, oxygen reduction reaction and electrolyte reduction in dye-sensitized solar cells.


Book
Mesoporous Metal Oxide Films
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.


Book
Novel Smart Textiles
Author:
ISBN: 3039285718 303928570X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The sensing, adapting, responding, multifunctionality, low energy, small size and weight, ease of forming, and low-cost attributes of smart textiles and their multidisciplinary scope offer numerous end uses in medical, sports and fitness, military, fashion, automotive, aerospace, the built environment, and energy industries. The research and development on these new and high-value materials cross scientific boundaries, redefine material science design and engineering, and enhance quality of life and our environment. “Novel Smart Textiles” is a focused Special Issue that reports the latest research of this field and facilitates dissemination, networking, discussion, and debate.

Keywords

power spectral density --- encapsulation --- spectral analysis --- visual brain --- quasi-static and cyclic mechanical loading --- transmission line --- PEDOT:PSS --- in-line monitoring --- equivalent circuit --- conductivity --- optimization --- Peltier element --- half-textile --- stretchable electronics --- e-textiles --- carbon nanotextiles --- wearable --- motion sensor --- electric properties --- metal flake --- durability --- stitch-based sensors --- energy harvesting --- metamaterials --- black-box --- smart textiles --- conductive thread --- stiffness --- life-time expectancy --- woven textiles --- visual response --- carbon nanomaterials --- skin-electrode impedance --- biofunctional textiles --- motion tracking --- fabric --- microencapsulation --- thermal textile pixels --- hybrid electrodes --- textile-based stretch sensors --- SMART pattern-changing fabric --- conductive textiles --- smart fabrics --- targeted delivery --- event-related potential (ERP) --- wearables --- analytical model --- split ring resonator --- textile electrode --- composites --- pattern effect --- nanofiber mat --- polymeric composites --- reduced graphene oxide --- EMS textiles --- carbon nanotubes --- electrospinning --- electrically conductive textiles --- psychotextiles --- polymers --- art and design --- parameter identification --- surface area evaluation --- thermal textile pixel --- mechanical and electrical properties --- textile sensors --- multifunctional --- coating --- wearable stretch sensor --- thermal communication --- non-auditory and nonvisual communication --- ECG --- grey-box --- dye-sensitized solar cell --- embroidered e-textiles --- electromagnetic shielding effectiveness --- textile/polymer composite --- stitch structure --- drug-delivery --- biofunctional --- polyacrylonitrile (PAN) --- thermal conductivity --- dye-sensitized solar cell (DSSC) --- smart textile --- electrospun solar cells --- e-textile


Book
Immobilized Non-Precious Electrocatalysts for Advanced Energy Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The successful commercialization of advanced energy devices, including fuel cells and solar cells (e.g., dye-sensitized solar cells) is somewhat dependent on the cost, activity and durability of the electrocatalysts. Nowadays, precious metal electrodes are the most widely used. Accordingly, the manufacturing costs are relatively high, which constrains wide application. Recently, some reports have introduced some promising non-precious electrocatalysts to be exploited in both oxidation and reduction reactions. It was concluded that immobilization of the functional material on a proper support can distinctly improve catalytic activity. Moreover, due to the synergetic effect, metallic alloy nanoparticles show very good electrocatalytic activity in this regard. This Special Issue aims to cover the most recent progress and the advances in the field of the immobilized non-precious electrocatalysts. This includes, but is not limited to, non-precious electrocatalysts for alcohol (methanol, ethanol, etc.) oxidation, oxygen reduction reaction and electrolyte reduction in dye-sensitized solar cells.

Keywords

Technology: general issues --- History of engineering & technology --- electrocatalysts --- bifunctional catalyst --- graphene --- dopants --- oxygen reduction reaction --- glassy carbon electrode --- metalloporphyrins --- Green Hydrogen --- SO2 electrolysis --- Westinghouse cycle --- carbon shell --- metallosupramolecular polymer --- hollow particles --- doping --- ethanol oxidation reaction --- palladium --- hollow carbon sphere --- alkaline medium --- dye sensitized solar cell --- SnO2-decorated graphene oxide --- counter electrode --- solar energy --- N, O-codoping --- polydopamine --- oxygen reduction --- oxygen evolution --- bifunctional --- electroactive surface area --- electrospinning --- Sn-incorporated Ni/C nanofibers --- Methanol --- Urea --- Cu3.8Ni-nanoalloy --- carbon nanofibers (NFs) --- urea oxidation --- fuel cells --- bilirubin oxidase --- direct electron transfer --- mediated electron transfer --- osmium polymer --- electrocatalysts --- bifunctional catalyst --- graphene --- dopants --- oxygen reduction reaction --- glassy carbon electrode --- metalloporphyrins --- Green Hydrogen --- SO2 electrolysis --- Westinghouse cycle --- carbon shell --- metallosupramolecular polymer --- hollow particles --- doping --- ethanol oxidation reaction --- palladium --- hollow carbon sphere --- alkaline medium --- dye sensitized solar cell --- SnO2-decorated graphene oxide --- counter electrode --- solar energy --- N, O-codoping --- polydopamine --- oxygen reduction --- oxygen evolution --- bifunctional --- electroactive surface area --- electrospinning --- Sn-incorporated Ni/C nanofibers --- Methanol --- Urea --- Cu3.8Ni-nanoalloy --- carbon nanofibers (NFs) --- urea oxidation --- fuel cells --- bilirubin oxidase --- direct electron transfer --- mediated electron transfer --- osmium polymer


Book
Mesoporous Metal Oxide Films
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.

Keywords

History of engineering & technology --- SnO2 --- Metglas --- hemin --- H2O2 --- cyclic voltammetry --- magnetoelastic resonance --- sensor --- titanium dioxide --- mesoporous --- thin film --- multi-layered --- photoanode --- semiconductor --- photoelectrochemical water oxidation --- Mn2O3 --- mesoporous materials --- electrochemical characterizations --- electrode --- supercapacitors --- gadolinium oxide --- hydrazine --- p-nitrophenol --- electrochemical sensing --- amperometric --- selective sensor --- nanocrystal --- ZnO --- density of states --- optical and electrical properties --- TiO2 films --- Ag nanoparticles --- optical properties --- spectroelectrochemistry --- surface plasmon --- Fe-doped TiO2 --- hydrothermal --- GCE --- chemical sensor --- amperometry --- dye-sensitized solar cells --- working electrode --- TiO2 --- NiO nanoparticles --- electron transport --- corrosion --- guar gum --- coatings --- electrochemical impedance spectroscopy (EIS) --- SECM --- AFM --- calcium phosphate silicate --- PEG --- bioceramics --- sol-gel preparation --- hard tissue engineering --- metal oxide --- sol-gel --- supercapacitor --- photoelectrode --- dye sensitized solar cell --- NiO --- SnO2 --- Metglas --- hemin --- H2O2 --- cyclic voltammetry --- magnetoelastic resonance --- sensor --- titanium dioxide --- mesoporous --- thin film --- multi-layered --- photoanode --- semiconductor --- photoelectrochemical water oxidation --- Mn2O3 --- mesoporous materials --- electrochemical characterizations --- electrode --- supercapacitors --- gadolinium oxide --- hydrazine --- p-nitrophenol --- electrochemical sensing --- amperometric --- selective sensor --- nanocrystal --- ZnO --- density of states --- optical and electrical properties --- TiO2 films --- Ag nanoparticles --- optical properties --- spectroelectrochemistry --- surface plasmon --- Fe-doped TiO2 --- hydrothermal --- GCE --- chemical sensor --- amperometry --- dye-sensitized solar cells --- working electrode --- TiO2 --- NiO nanoparticles --- electron transport --- corrosion --- guar gum --- coatings --- electrochemical impedance spectroscopy (EIS) --- SECM --- AFM --- calcium phosphate silicate --- PEG --- bioceramics --- sol-gel preparation --- hard tissue engineering --- metal oxide --- sol-gel --- supercapacitor --- photoelectrode --- dye sensitized solar cell --- NiO


Book
Coordination Chemistry of Silicon
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

cluster --- molecular orbital analysis --- bond activation --- X-ray diffraction --- silsesquioxanes --- digermacyclobutadiene --- intermetallic bond --- germanium --- computational chemistry --- ?-electron systems --- isocyanide --- X-ray crystallography --- cyclic organopolysilane --- disilene --- ruthenium --- platinum --- DFT --- Photostability --- silicon surfaces --- stereochemistry --- palladium --- distorted coordination --- 29Si NMR spectroscopy --- organosilicon --- disilanylene polymer --- Si–Cl activation --- adsorption --- AIM --- siliconoid --- nanoparticle --- disiloxane tetrols --- germylene --- hydrogen bonding --- TiO2 --- dehydrogenative alkoxylation --- siloxanes --- 2-silylpyrrolidines --- bonding analysis --- ?-chloro-?-hydrooligosilane --- hydrido complex --- oxidative addition --- photoreaction --- template --- surface modification --- titanium --- bromosilylenes --- host-guest chemistry --- hydrogen bonds --- salt-free --- N-heterocyclic carbines --- silicon cluster --- condensation --- silyliumylidenes --- Baird’s rule --- N-heterocyclic carbenes --- reductant --- main group coordination chemistry --- molecular cage --- subvalent compounds --- isomerization --- silanetriols --- germathioacid chloride --- dehydrobromination --- N-heterocyclic carbene --- mechanistic insights --- ligand-exchange reaction --- bridging silylene ligand --- dye-sensitized solar cell --- silylene --- computation --- functionalization --- silicon --- digermene --- N-Heterocyclic tetrylene --- density functional theory --- primary silane --- small molecule activation --- excited state aromaticity --- germanethione --- supramolecular chemistry


Book
Coordination Chemistry of Silicon
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

cluster --- molecular orbital analysis --- bond activation --- X-ray diffraction --- silsesquioxanes --- digermacyclobutadiene --- intermetallic bond --- germanium --- computational chemistry --- ?-electron systems --- isocyanide --- X-ray crystallography --- cyclic organopolysilane --- disilene --- ruthenium --- platinum --- DFT --- Photostability --- silicon surfaces --- stereochemistry --- palladium --- distorted coordination --- 29Si NMR spectroscopy --- organosilicon --- disilanylene polymer --- Si–Cl activation --- adsorption --- AIM --- siliconoid --- nanoparticle --- disiloxane tetrols --- germylene --- hydrogen bonding --- TiO2 --- dehydrogenative alkoxylation --- siloxanes --- 2-silylpyrrolidines --- bonding analysis --- ?-chloro-?-hydrooligosilane --- hydrido complex --- oxidative addition --- photoreaction --- template --- surface modification --- titanium --- bromosilylenes --- host-guest chemistry --- hydrogen bonds --- salt-free --- N-heterocyclic carbines --- silicon cluster --- condensation --- silyliumylidenes --- Baird’s rule --- N-heterocyclic carbenes --- reductant --- main group coordination chemistry --- molecular cage --- subvalent compounds --- isomerization --- silanetriols --- germathioacid chloride --- dehydrobromination --- N-heterocyclic carbene --- mechanistic insights --- ligand-exchange reaction --- bridging silylene ligand --- dye-sensitized solar cell --- silylene --- computation --- functionalization --- silicon --- digermene --- N-Heterocyclic tetrylene --- density functional theory --- primary silane --- small molecule activation --- excited state aromaticity --- germanethione --- supramolecular chemistry

Listing 1 - 10 of 14 << page
of 2
>>
Sort by