Listing 1 - 7 of 7 |
Sort by
|
Choose an application
This book is a special collection of articles dedicated to the preparation and characterization of nanoporous materials, such as zeolitic-type materials, mesoporous silica (SBA-15, MCM-41, and KIT-6), mesoporous metallic oxides, metal–organic framework structures (MOFs), and pillared clays, and their applications in adsorption, catalysis, and separation processes. This book presents a global vision of researchers from international universities, research centers, and industries working with nanoporous materials and shares the latest results on the synthesis and characterization of such materials, which have given rise to the special interest in their applications in basic and industrial processes.
n/a --- porous silicon --- ?-zeolite --- 4-trimethylimidazolium --- silica pillared clays --- oligomerization --- hydrofluoric media --- KIT-6 --- glass --- adsorption --- synthesis parameters --- seeds --- MCM-41 --- swelling --- liquid-gas interaction --- confined environment --- ionic liquid --- aluminosilicate --- self-focusing --- zeolite --- 3 --- niobium oxyhydroxide catalysts --- kaolin --- pillaring --- surface properties --- lamellar zeolite --- antibiotics adsorption --- diffusion --- TPA --- ?-diimine --- STW zeolite --- ethanol dehydration --- paraffins --- mesoporous silica --- metal organic framework --- epoxidation --- zeolites --- layered zeolite --- liquid outflow --- Z-scan --- heterogenized --- cationic dye adsorption --- 2-ethyl-1 --- third-order nonlinearity --- gas amount --- surfactant --- nickel --- cyclohexene --- zeolite A --- mesopores --- IGC --- cubic structure --- two-dimensional zeolites --- delaminating --- MWW --- copper removal --- MCM-22 --- hierarchical zeolite --- reaction mechanism --- metakaolin --- liquid/nanoporous material system --- degassing pretreatment
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
Technology: general issues --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- n/a
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- n/a
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
Technology: general issues --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent
Choose an application
Entitled “Natural Fiber-Based Composites”, this Special Issue has the objective to give an inventory of the latest research in the area of composites reinforced with natural fibers. Fibers of renewable origin have many advantages. They are abundant and cheap, they have a reduced impact on the environment, and they are also independent from fossil resources. Their ability to mechanically reinforce thermoplastic matrices is well known, as their natural heat insulation ability. In the last twenty years, the use of cellulosic and lignocellulosic agricultural by-products for composite applications has been of great interest, especially for reinforcing matrices. The matrices can themselves be of renewable origin (e.g., proteins, starch, polylactic acid, polyhydroxyalkanoates, polyamides, etc.), thus contributing to the development of 100% bio-based composites with a controlled end of life. This Special Issue’s objective is to give an inventory of the latest research in this area of composites reinforced with natural fibers, focusing in particular on the preparation and molding processes of such materials (e.g., extrusion, injection-molding, hot pressing, etc.) and their characterization. It contains one review and nineteen research reports authored by researchers from four continents and sixteen countries, namely, Brazil, China, France, Italy, Japan, Malaysia, Mexico, Pakistan, Poland, Qatar, Serbia, Slovenia, Spain, Sweden, Tunisia, and Vietnam. It provides an update on current research in the field of natural fiber based composite materials. All these contributions will be a source of inspiration for the development of new composites, especially for producers of natural fibers, polymer matrices of renewable origin and composite materials. Generally speaking, these new materials are environmentally friendly and will undoubtedly find numerous applications in the years to come in many sectors. Dr. Philippe Evon Guest Editor
Technology: general issues --- biopolymers --- sunflower protein concentrate --- municipal bio-waste --- urea --- slow-release fertilizers --- lime mortar --- mucilaginous plants --- bio-products --- Fourier-transform infrared (FTIR) characterization --- cellulosic --- fiber --- flame retardant --- ecofriendly --- cotton --- coating --- exterior wall paints --- stain resistance --- western city --- volatile organic compounds (VOCs) --- cellulose nanofiber --- pretreatment --- lignin --- hemicellulose --- physicochemical properties --- natural-fiber-reinforced polymer composites --- chemical treatments --- natural fibers --- manufacturing techniques --- green composites --- amaranth stem --- bark --- pith --- insulation blocks --- hardboards --- green composite --- nonwoven --- sound absorption --- structure --- profiling --- natural dye --- Himalayan balsam --- invasive plant --- printing --- textile --- paper --- olive stone --- biocomposite --- LCA --- circular economy --- filler --- sericin --- poly(N-isopropylacrylamide) --- cotton fabrics --- electrospinning --- microcapsules --- chitosan --- essential oil --- bio functional material --- chitin nanofiber --- composite particle --- Pickering emulsion polymerization --- polystyrene --- scaled-down --- wastewater treatment --- differential scanning calorimetry --- tensile properties --- proton nuclear magnetic resonance spectroscopy --- packaging --- hybrid yarns --- hemp --- PA11 --- woven fabric --- bio-based composite --- mechanical characterisation --- biobased carbon materials --- meso- and microporous carbons --- dye adsorption --- chemical adsorption --- electrostatic interactions --- flax tows --- ultrasound --- gamma treatment --- DVS --- environmental analysis --- mechanical properties --- composite materials --- linseed flax --- straw --- fibre mechanical extraction --- shives --- mean fibre length --- mean fibre diameter --- geotextiles --- antibacterial activity --- kapok fibre --- polycaprolactone --- sound-absorption performance --- fractal dimension --- epoxy --- sustainability --- flame retardancy --- coffee wastes --- biowaste --- biopolymers --- sunflower protein concentrate --- municipal bio-waste --- urea --- slow-release fertilizers --- lime mortar --- mucilaginous plants --- bio-products --- Fourier-transform infrared (FTIR) characterization --- cellulosic --- fiber --- flame retardant --- ecofriendly --- cotton --- coating --- exterior wall paints --- stain resistance --- western city --- volatile organic compounds (VOCs) --- cellulose nanofiber --- pretreatment --- lignin --- hemicellulose --- physicochemical properties --- natural-fiber-reinforced polymer composites --- chemical treatments --- natural fibers --- manufacturing techniques --- green composites --- amaranth stem --- bark --- pith --- insulation blocks --- hardboards --- green composite --- nonwoven --- sound absorption --- structure --- profiling --- natural dye --- Himalayan balsam --- invasive plant --- printing --- textile --- paper --- olive stone --- biocomposite --- LCA --- circular economy --- filler --- sericin --- poly(N-isopropylacrylamide) --- cotton fabrics --- electrospinning --- microcapsules --- chitosan --- essential oil --- bio functional material --- chitin nanofiber --- composite particle --- Pickering emulsion polymerization --- polystyrene --- scaled-down --- wastewater treatment --- differential scanning calorimetry --- tensile properties --- proton nuclear magnetic resonance spectroscopy --- packaging --- hybrid yarns --- hemp --- PA11 --- woven fabric --- bio-based composite --- mechanical characterisation --- biobased carbon materials --- meso- and microporous carbons --- dye adsorption --- chemical adsorption --- electrostatic interactions --- flax tows --- ultrasound --- gamma treatment --- DVS --- environmental analysis --- mechanical properties --- composite materials --- linseed flax --- straw --- fibre mechanical extraction --- shives --- mean fibre length --- mean fibre diameter --- geotextiles --- antibacterial activity --- kapok fibre --- polycaprolactone --- sound-absorption performance --- fractal dimension --- epoxy --- sustainability --- flame retardancy --- coffee wastes --- biowaste
Choose an application
Entitled “Natural Fiber-Based Composites”, this Special Issue has the objective to give an inventory of the latest research in the area of composites reinforced with natural fibers. Fibers of renewable origin have many advantages. They are abundant and cheap, they have a reduced impact on the environment, and they are also independent from fossil resources. Their ability to mechanically reinforce thermoplastic matrices is well known, as their natural heat insulation ability. In the last twenty years, the use of cellulosic and lignocellulosic agricultural by-products for composite applications has been of great interest, especially for reinforcing matrices. The matrices can themselves be of renewable origin (e.g., proteins, starch, polylactic acid, polyhydroxyalkanoates, polyamides, etc.), thus contributing to the development of 100% bio-based composites with a controlled end of life. This Special Issue’s objective is to give an inventory of the latest research in this area of composites reinforced with natural fibers, focusing in particular on the preparation and molding processes of such materials (e.g., extrusion, injection-molding, hot pressing, etc.) and their characterization. It contains one review and nineteen research reports authored by researchers from four continents and sixteen countries, namely, Brazil, China, France, Italy, Japan, Malaysia, Mexico, Pakistan, Poland, Qatar, Serbia, Slovenia, Spain, Sweden, Tunisia, and Vietnam. It provides an update on current research in the field of natural fiber based composite materials. All these contributions will be a source of inspiration for the development of new composites, especially for producers of natural fibers, polymer matrices of renewable origin and composite materials. Generally speaking, these new materials are environmentally friendly and will undoubtedly find numerous applications in the years to come in many sectors. Dr. Philippe Evon Guest Editor
Technology: general issues --- biopolymers --- sunflower protein concentrate --- municipal bio-waste --- urea --- slow-release fertilizers --- lime mortar --- mucilaginous plants --- bio-products --- Fourier-transform infrared (FTIR) characterization --- cellulosic --- fiber --- flame retardant --- ecofriendly --- cotton --- coating --- exterior wall paints --- stain resistance --- western city --- volatile organic compounds (VOCs) --- cellulose nanofiber --- pretreatment --- lignin --- hemicellulose --- physicochemical properties --- natural-fiber-reinforced polymer composites --- chemical treatments --- natural fibers --- manufacturing techniques --- green composites --- amaranth stem --- bark --- pith --- insulation blocks --- hardboards --- green composite --- nonwoven --- sound absorption --- structure --- profiling --- natural dye --- Himalayan balsam --- invasive plant --- printing --- textile --- paper --- olive stone --- biocomposite --- LCA --- circular economy --- filler --- sericin --- poly(N-isopropylacrylamide) --- cotton fabrics --- electrospinning --- microcapsules --- chitosan --- essential oil --- bio functional material --- chitin nanofiber --- composite particle --- Pickering emulsion polymerization --- polystyrene --- scaled-down --- wastewater treatment --- differential scanning calorimetry --- tensile properties --- proton nuclear magnetic resonance spectroscopy --- packaging --- hybrid yarns --- hemp --- PA11 --- woven fabric --- bio-based composite --- mechanical characterisation --- biobased carbon materials --- meso- and microporous carbons --- dye adsorption --- chemical adsorption --- electrostatic interactions --- flax tows --- ultrasound --- gamma treatment --- DVS --- environmental analysis --- mechanical properties --- composite materials --- linseed flax --- straw --- fibre mechanical extraction --- shives --- mean fibre length --- mean fibre diameter --- geotextiles --- antibacterial activity --- kapok fibre --- polycaprolactone --- sound-absorption performance --- fractal dimension --- epoxy --- sustainability --- flame retardancy --- coffee wastes --- biowaste --- n/a
Choose an application
Entitled “Natural Fiber-Based Composites”, this Special Issue has the objective to give an inventory of the latest research in the area of composites reinforced with natural fibers. Fibers of renewable origin have many advantages. They are abundant and cheap, they have a reduced impact on the environment, and they are also independent from fossil resources. Their ability to mechanically reinforce thermoplastic matrices is well known, as their natural heat insulation ability. In the last twenty years, the use of cellulosic and lignocellulosic agricultural by-products for composite applications has been of great interest, especially for reinforcing matrices. The matrices can themselves be of renewable origin (e.g., proteins, starch, polylactic acid, polyhydroxyalkanoates, polyamides, etc.), thus contributing to the development of 100% bio-based composites with a controlled end of life. This Special Issue’s objective is to give an inventory of the latest research in this area of composites reinforced with natural fibers, focusing in particular on the preparation and molding processes of such materials (e.g., extrusion, injection-molding, hot pressing, etc.) and their characterization. It contains one review and nineteen research reports authored by researchers from four continents and sixteen countries, namely, Brazil, China, France, Italy, Japan, Malaysia, Mexico, Pakistan, Poland, Qatar, Serbia, Slovenia, Spain, Sweden, Tunisia, and Vietnam. It provides an update on current research in the field of natural fiber based composite materials. All these contributions will be a source of inspiration for the development of new composites, especially for producers of natural fibers, polymer matrices of renewable origin and composite materials. Generally speaking, these new materials are environmentally friendly and will undoubtedly find numerous applications in the years to come in many sectors. Dr. Philippe Evon Guest Editor
biopolymers --- sunflower protein concentrate --- municipal bio-waste --- urea --- slow-release fertilizers --- lime mortar --- mucilaginous plants --- bio-products --- Fourier-transform infrared (FTIR) characterization --- cellulosic --- fiber --- flame retardant --- ecofriendly --- cotton --- coating --- exterior wall paints --- stain resistance --- western city --- volatile organic compounds (VOCs) --- cellulose nanofiber --- pretreatment --- lignin --- hemicellulose --- physicochemical properties --- natural-fiber-reinforced polymer composites --- chemical treatments --- natural fibers --- manufacturing techniques --- green composites --- amaranth stem --- bark --- pith --- insulation blocks --- hardboards --- green composite --- nonwoven --- sound absorption --- structure --- profiling --- natural dye --- Himalayan balsam --- invasive plant --- printing --- textile --- paper --- olive stone --- biocomposite --- LCA --- circular economy --- filler --- sericin --- poly(N-isopropylacrylamide) --- cotton fabrics --- electrospinning --- microcapsules --- chitosan --- essential oil --- bio functional material --- chitin nanofiber --- composite particle --- Pickering emulsion polymerization --- polystyrene --- scaled-down --- wastewater treatment --- differential scanning calorimetry --- tensile properties --- proton nuclear magnetic resonance spectroscopy --- packaging --- hybrid yarns --- hemp --- PA11 --- woven fabric --- bio-based composite --- mechanical characterisation --- biobased carbon materials --- meso- and microporous carbons --- dye adsorption --- chemical adsorption --- electrostatic interactions --- flax tows --- ultrasound --- gamma treatment --- DVS --- environmental analysis --- mechanical properties --- composite materials --- linseed flax --- straw --- fibre mechanical extraction --- shives --- mean fibre length --- mean fibre diameter --- geotextiles --- antibacterial activity --- kapok fibre --- polycaprolactone --- sound-absorption performance --- fractal dimension --- epoxy --- sustainability --- flame retardancy --- coffee wastes --- biowaste --- n/a
Listing 1 - 7 of 7 |
Sort by
|