Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Due to their lightweight and high specific strength, Mg-based alloys are considered as substitutes to their heavier counterparts in applications in which corrosion is non-relevant and weight saving is of importance. Furthermore, due to the biocompatibility of Mg, some alloys with controlled corrosion rates are used as degradable implant materials in the medical sector. The typical processing route of Mg parts incorporates a casting step and, subsequently, a thermo–mechanical treatment. In order to achieve the desired macroscopic properties and thus fulfill the service requirements, thorough knowledge of the relationship between the microstructure, the processing steps, and the resulting property profile is necessary. This Special Issue covers in situ and ex situ experimental and computational investigations of the behavior under thermo–mechanical load of Mg-based alloys utilizing modern characterization and simulation techniques. The papers cover investigations on the effect of rare earth additions on the mechanical properties of different Mg alloys, including the effect of long-period stacking-ordered (LPSO) structures, and the experimental and computational investigation of the effect of different processing routes.
Technology: general issues --- magnesium alloys --- long period stacking ordered structures (LPSO) --- synchrotron radiation diffraction --- magnesium alloy --- low-speed extrusion --- microstructure evolution --- mechanical properties --- thermomechanical processing --- calcium addition --- disintegrated melt deposition --- processing map --- formability --- initial texture --- deformation mechanism --- texture evolution --- ductile damage --- GTN model --- magnesium --- in-situ --- deformation mechanisms --- deformation behaviour --- restoration mechanisms --- electron microscopy --- characterisation --- in-situ diffraction --- Mg-LPSO alloys --- neutron diffraction --- EBSD --- dislocation slip --- twinning --- magnesium alloys --- long period stacking ordered structures (LPSO) --- synchrotron radiation diffraction --- magnesium alloy --- low-speed extrusion --- microstructure evolution --- mechanical properties --- thermomechanical processing --- calcium addition --- disintegrated melt deposition --- processing map --- formability --- initial texture --- deformation mechanism --- texture evolution --- ductile damage --- GTN model --- magnesium --- in-situ --- deformation mechanisms --- deformation behaviour --- restoration mechanisms --- electron microscopy --- characterisation --- in-situ diffraction --- Mg-LPSO alloys --- neutron diffraction --- EBSD --- dislocation slip --- twinning
Choose an application
Due to their lightweight and high specific strength, Mg-based alloys are considered as substitutes to their heavier counterparts in applications in which corrosion is non-relevant and weight saving is of importance. Furthermore, due to the biocompatibility of Mg, some alloys with controlled corrosion rates are used as degradable implant materials in the medical sector. The typical processing route of Mg parts incorporates a casting step and, subsequently, a thermo–mechanical treatment. In order to achieve the desired macroscopic properties and thus fulfill the service requirements, thorough knowledge of the relationship between the microstructure, the processing steps, and the resulting property profile is necessary. This Special Issue covers in situ and ex situ experimental and computational investigations of the behavior under thermo–mechanical load of Mg-based alloys utilizing modern characterization and simulation techniques. The papers cover investigations on the effect of rare earth additions on the mechanical properties of different Mg alloys, including the effect of long-period stacking-ordered (LPSO) structures, and the experimental and computational investigation of the effect of different processing routes.
Technology: general issues --- magnesium alloys --- long period stacking ordered structures (LPSO) --- synchrotron radiation diffraction --- magnesium alloy --- low-speed extrusion --- microstructure evolution --- mechanical properties --- thermomechanical processing --- calcium addition --- disintegrated melt deposition --- processing map --- formability --- initial texture --- deformation mechanism --- texture evolution --- ductile damage --- GTN model --- magnesium --- in-situ --- deformation mechanisms --- deformation behaviour --- restoration mechanisms --- electron microscopy --- characterisation --- in-situ diffraction --- Mg-LPSO alloys --- neutron diffraction --- EBSD --- dislocation slip --- twinning --- n/a
Choose an application
Due to their lightweight and high specific strength, Mg-based alloys are considered as substitutes to their heavier counterparts in applications in which corrosion is non-relevant and weight saving is of importance. Furthermore, due to the biocompatibility of Mg, some alloys with controlled corrosion rates are used as degradable implant materials in the medical sector. The typical processing route of Mg parts incorporates a casting step and, subsequently, a thermo–mechanical treatment. In order to achieve the desired macroscopic properties and thus fulfill the service requirements, thorough knowledge of the relationship between the microstructure, the processing steps, and the resulting property profile is necessary. This Special Issue covers in situ and ex situ experimental and computational investigations of the behavior under thermo–mechanical load of Mg-based alloys utilizing modern characterization and simulation techniques. The papers cover investigations on the effect of rare earth additions on the mechanical properties of different Mg alloys, including the effect of long-period stacking-ordered (LPSO) structures, and the experimental and computational investigation of the effect of different processing routes.
magnesium alloys --- long period stacking ordered structures (LPSO) --- synchrotron radiation diffraction --- magnesium alloy --- low-speed extrusion --- microstructure evolution --- mechanical properties --- thermomechanical processing --- calcium addition --- disintegrated melt deposition --- processing map --- formability --- initial texture --- deformation mechanism --- texture evolution --- ductile damage --- GTN model --- magnesium --- in-situ --- deformation mechanisms --- deformation behaviour --- restoration mechanisms --- electron microscopy --- characterisation --- in-situ diffraction --- Mg-LPSO alloys --- neutron diffraction --- EBSD --- dislocation slip --- twinning --- n/a
Choose an application
The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.
n/a --- hardening --- modeling --- direct forming --- forming limit curve --- depth-sensing indentation --- stamping --- finite element method --- similitude --- the bathtub model --- boron steel --- plastic anisotropy --- physical experiment --- robustness evaluation --- cold deep drawing --- hardening law --- formability --- magnetic-pulse forming --- hot deep drawing --- metallic bipolar plate --- parameters identification --- finite element simulation --- mechanical properties --- hardness --- deformation characteristics --- continuum damage mechanics --- yield function --- Knoop indenter --- Young’s modulus --- damage --- 3D adaptive remeshing --- springback --- bake hardening --- Johnson–Cook material model --- anisotropy --- indirect forming --- ductile damage --- steel sheet --- mechanical modeling --- fracture behavior --- fuel cells --- dent resistance --- numerical simulation --- mixed hardening --- M-K theory --- uniform deformation --- non-proportional loading paths --- high-frequency oscillation --- gas detonation forming --- yield locus --- sheet metal forming --- inhomogeneity --- TA32 titanium alloy --- aluminium alloy formability --- Young's modulus --- Johnson-Cook material model
Listing 1 - 4 of 4 |
Sort by
|