Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
This volume examines the applicability of nature-based solutions in ecological restoration practice and in contemporary landscape architecture by bringing together ecology and architecture in the built environment. Green infrastructure is used to address urban challenges such as climate change adaptation, disaster risk reduction, and stormwater management. In addition, thermal comfort nature-based solutions reintroduce critical connections between natural and urban systems. In light of ongoing developments in sustainable urban development, the goal is a paradigm shift towards a landscape that restores and rehabilitates urban ecosystems. The ten contributions to this book examine a wide range of successful cases of designing healthier, greener and more resilient landscapes in different geographical contexts, from the United States of America and Brazil, through various European regions, to Singapore and China. While some chapters attempt to conceptualize the interconnections between cities and nature, others clearly have an empirical focus. Therefore, this volume provides a rich body of work and acts as a starting point for further studies on restoration of ecosystems and integrative policies such as the United Nations Sustainable Development Goals.
building-integrated photovoltaics --- vertical farming --- shading devices --- design optimisation --- low-carbon architecture --- multi-criteria decision assessment --- old field succession --- tree establishment --- microclimate --- plant-soil interactions --- soil nutrients --- Lapalala Wilderness --- life cycle costs --- stormwater management --- storm water management model --- natural hazard insurance --- climate change adaptation --- disaster risk reduction --- nature-based solutions --- nature assurance scheme --- insurance value of ecosystems --- flood risk reduction --- thermal comfort enhancement --- microclimatic simulations --- Mike Urban --- ENVI-met --- ecological security --- driving force --- yangtze river urban agglomeration --- sustainable tourism --- smart tourism --- mobile applications --- nature recreation --- green infrastructure --- stakeholder participation --- collaborative governance --- urban sustainability --- citizen perceptions --- coastal restoration --- oyster --- marsh --- seagrass --- restoration success --- coastal habitat --- exotic species --- urban biodiversity --- urban ecosystems --- carbon neutral cities
Choose an application
This volume examines the applicability of nature-based solutions in ecological restoration practice and in contemporary landscape architecture by bringing together ecology and architecture in the built environment. Green infrastructure is used to address urban challenges such as climate change adaptation, disaster risk reduction, and stormwater management. In addition, thermal comfort nature-based solutions reintroduce critical connections between natural and urban systems. In light of ongoing developments in sustainable urban development, the goal is a paradigm shift towards a landscape that restores and rehabilitates urban ecosystems. The ten contributions to this book examine a wide range of successful cases of designing healthier, greener and more resilient landscapes in different geographical contexts, from the United States of America and Brazil, through various European regions, to Singapore and China. While some chapters attempt to conceptualize the interconnections between cities and nature, others clearly have an empirical focus. Therefore, this volume provides a rich body of work and acts as a starting point for further studies on restoration of ecosystems and integrative policies such as the United Nations Sustainable Development Goals.
Research & information: general --- Geography --- building-integrated photovoltaics --- vertical farming --- shading devices --- design optimisation --- low-carbon architecture --- multi-criteria decision assessment --- old field succession --- tree establishment --- microclimate --- plant-soil interactions --- soil nutrients --- Lapalala Wilderness --- life cycle costs --- stormwater management --- storm water management model --- natural hazard insurance --- climate change adaptation --- disaster risk reduction --- nature-based solutions --- nature assurance scheme --- insurance value of ecosystems --- flood risk reduction --- thermal comfort enhancement --- microclimatic simulations --- Mike Urban --- ENVI-met --- ecological security --- driving force --- yangtze river urban agglomeration --- sustainable tourism --- smart tourism --- mobile applications --- nature recreation --- green infrastructure --- stakeholder participation --- collaborative governance --- urban sustainability --- citizen perceptions --- coastal restoration --- oyster --- marsh --- seagrass --- restoration success --- coastal habitat --- exotic species --- urban biodiversity --- urban ecosystems --- carbon neutral cities
Choose an application
"Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph.
snow albedo radiative forcing --- snow albedo feedback --- radiative kernel --- remote sensing --- cloud fraction --- integrated liquid water --- integrated water vapour --- diurnal cycle --- microwave radiometer --- classification --- self-learning --- training data --- crop --- leaf area index --- comparison --- MODIS --- uncertainty --- China --- EVI --- climatic factor --- driving force --- grey relational analysis (GRA) --- Inner Mongolia Autonomous Region (IMAR) --- Earth Observation (EO) --- satellite --- sensors --- platform --- SAR --- GNSS-R --- optical sensors --- polar --- weather --- ice --- marine --- land surface temperature --- urban heat island --- surface urban heat island --- land use --- land management unit --- Earth observation --- radiometer --- VIS/NIR imager --- terrestrial ecosystem --- MODIS GPP product --- calibration --- arid region --- oasis-desert ecosystem --- Land use and land cover (LULC) --- cloud-to-ground (CG) lightning --- particulate matter (PM10) --- sulfur dioxide (SO2) --- El Niño 2015–16 --- trace gases --- Upper Troposphere Lower Stratosphere --- n/a --- El Niño 2015-16
Choose an application
According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.
independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake --- n/a
Choose an application
"Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph.
Research & information: general --- Environmental economics --- snow albedo radiative forcing --- snow albedo feedback --- radiative kernel --- remote sensing --- cloud fraction --- integrated liquid water --- integrated water vapour --- diurnal cycle --- microwave radiometer --- classification --- self-learning --- training data --- crop --- leaf area index --- comparison --- MODIS --- uncertainty --- China --- EVI --- climatic factor --- driving force --- grey relational analysis (GRA) --- Inner Mongolia Autonomous Region (IMAR) --- Earth Observation (EO) --- satellite --- sensors --- platform --- SAR --- GNSS-R --- optical sensors --- polar --- weather --- ice --- marine --- land surface temperature --- urban heat island --- surface urban heat island --- land use --- land management unit --- Earth observation --- radiometer --- VIS/NIR imager --- terrestrial ecosystem --- MODIS GPP product --- calibration --- arid region --- oasis-desert ecosystem --- Land use and land cover (LULC) --- cloud-to-ground (CG) lightning --- particulate matter (PM10) --- sulfur dioxide (SO2) --- El Niño 2015-16 --- trace gases --- Upper Troposphere Lower Stratosphere
Choose an application
This volume examines the applicability of nature-based solutions in ecological restoration practice and in contemporary landscape architecture by bringing together ecology and architecture in the built environment. Green infrastructure is used to address urban challenges such as climate change adaptation, disaster risk reduction, and stormwater management. In addition, thermal comfort nature-based solutions reintroduce critical connections between natural and urban systems. In light of ongoing developments in sustainable urban development, the goal is a paradigm shift towards a landscape that restores and rehabilitates urban ecosystems. The ten contributions to this book examine a wide range of successful cases of designing healthier, greener and more resilient landscapes in different geographical contexts, from the United States of America and Brazil, through various European regions, to Singapore and China. While some chapters attempt to conceptualize the interconnections between cities and nature, others clearly have an empirical focus. Therefore, this volume provides a rich body of work and acts as a starting point for further studies on restoration of ecosystems and integrative policies such as the United Nations Sustainable Development Goals.
Research & information: general --- Geography --- building-integrated photovoltaics --- vertical farming --- shading devices --- design optimisation --- low-carbon architecture --- multi-criteria decision assessment --- old field succession --- tree establishment --- microclimate --- plant-soil interactions --- soil nutrients --- Lapalala Wilderness --- life cycle costs --- stormwater management --- storm water management model --- natural hazard insurance --- climate change adaptation --- disaster risk reduction --- nature-based solutions --- nature assurance scheme --- insurance value of ecosystems --- flood risk reduction --- thermal comfort enhancement --- microclimatic simulations --- Mike Urban --- ENVI-met --- ecological security --- driving force --- yangtze river urban agglomeration --- sustainable tourism --- smart tourism --- mobile applications --- nature recreation --- green infrastructure --- stakeholder participation --- collaborative governance --- urban sustainability --- citizen perceptions --- coastal restoration --- oyster --- marsh --- seagrass --- restoration success --- coastal habitat --- exotic species --- urban biodiversity --- urban ecosystems --- carbon neutral cities
Choose an application
According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.
Technology: general issues --- History of engineering & technology --- independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake --- n/a
Choose an application
According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies.
Technology: general issues --- History of engineering & technology --- independent-wheel drive --- steering assistance --- nonlinear system --- active disturbance rejection control --- smooth road feeling --- city bus transport --- electric vehicles --- electrification --- software tool --- planning --- control --- charging management --- simulation --- analysis --- energy management --- hybrid electric vehicle --- powertrain electrification --- equivalent consumption minimization --- supercharging --- hardware-in-the-loop experiments --- driving force distribution --- decentralized traction system --- 4WD electric vehicle --- energy efficiency --- traction control --- efficiency optimization --- air mobility --- fuel cell hybrid aircraft --- stochastic optimal control --- drift counteraction optimal control --- normal force estimation --- unbiased minimum variance estimation --- controller output observer --- youla parameterization --- adaptive cruise control --- automated driving --- energy-saving --- fuel-saving --- optimal control --- passenger comfort --- new energy vehicles --- speed prediction --- macroscopic traffic model --- traffic big-data --- deep learning --- vehicle lateral dynamic and control --- unresolved issues --- application of speed prediction --- electric vehicle --- hybrid vehicle --- lithium ion --- ultracapacitor --- battery aging --- EHB --- EMB --- EWB --- system modeling --- bond graph --- optimization --- control design --- Youla parameterization --- robust control --- nonlinear optimization --- brake-by-wire --- actuator --- electro-mechanical brake --- electronic wedge brake --- electro-hydraulic brake
Choose an application
Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.
Technology: general issues --- bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human-robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle-terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- "whip-lashing" method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter
Choose an application
Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.
Technology: general issues --- bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human–robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle–terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- “whip-lashing” method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter --- n/a --- human-robot collisions --- mechanics of vehicle-terrain interaction --- "whip-lashing" method
Listing 1 - 10 of 11 | << page >> |
Sort by
|