Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (4)

German (1)


Year
From To Submit

2020 (4)

2016 (1)

Listing 1 - 5 of 5
Sort by

Book
Analyse der Realnutzung von Elektrofahrzeugen in kommerziellen Flotten zur Definition einer bedarfsgerechten Fahrzeugauslegung
Author:
ISBN: 1000052397 3731504898 Year: 2016 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Based on a naturalistic driving study with electric vehicles in commercial fleets, a detailed analysis of mobility is conducted to derive an empirically founded tailor-made vehicle specification, which focuses on the core of the user demand and excludes statistical outliers in favour of a more economical design. Furthermore, real-world driving cycles for electric vehicles are created and the market potential of such a tailor-made vehicle is estimated.


Book
Batteries and Supercapacitors Aging
Authors: ---
ISBN: 303928715X 3039287141 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging.


Book
Automation, Control and Energy Efficiency in Complex Systems
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is aimed at serving researchers, engineers, scientists, and engineering graduate and PhD students of engineering and physical science together with individuals interested in engineering and science. This book focuses on the application of engineering methods to complex systems including transportation, building, and manufacturing, with approaches representing a wide variety of disciplines of engineering and science. Throughout the book, great emphases are placed on engineering applications of complex systems, as well as the methodologies of automation, including artificial intelligence, automated and intelligent control, energy analysis, energy modelling, energy management, and optimised energy efficiency. The significant impact of recent studies that have been selected for presentation are of high interest in engineering complex systems. An attempt has been made to expose the reading audience of engineers and researchers to a broad range of theoretical and practical topics. The topics contained in the present book are of specific interest to engineers who are seeking expertise in transportation, building, and manufacturing technologies as well as mathematical modelling of complex systems, engineering approaches to engineering complex problems, automation via artificial intelligence methods, automated and intelligent control, and energy systems. The primary audience of this book are researchers, graduate students, and engineers in mechanical engineering, control engineering, computer engineering, electrical engineering, and science disciplines. In particular, the book can be used for training graduate and PhD students as well as senior undergraduate students to enhance their knowledge by taking a graduate or advanced undergraduate course in the areas of complex systems, control systems, energy systems, and engineering applications. The covered research topics are also of interest to engineers and academia who are seeking to expand their expertise in these areas.eng

Keywords

History of engineering & technology --- microstructure --- carbon fibers --- polyacrylonitrile --- thermal stabilization --- recirculation fan frequency --- IR imaging --- extended-range electric bus --- adaptive-equivalent consumption minimum strategy --- Markov chain --- target driving cycles --- SOC reference curve --- energy management system --- building automation systems --- building energy efficiency --- daytime lighting --- lighting control systems --- EN 15232 standard --- four-wheel independent-drive --- electric vehicle --- skid steering --- differential steering --- sliding mode variable structure control --- robustness --- active 4WS system --- hierarchical control --- decoupling --- fractional sliding mode control --- vehicle-to-grid --- EV charging infrastructure --- optimal dispatch --- oil-to-electricity transformation for automobiles --- permanent magnet synchronous motor --- sliding mode control --- motion control --- fractional order --- sliding surface --- composite controller --- intelligent control (IC) --- fuzzy cognitive map (FCM) --- direct expansion air-conditioning (DX A/C) --- nonlinear --- coupling effect --- MIMO --- stability analysis --- Lyapunov function --- fuzzy bidirectional associative memories (FBAMs) --- URT --- multi-train optimization --- steep slope --- electrical network model --- regenerative energy dynamic losses --- Air-Conditioning --- On-Off control --- desert climate --- optimization --- Elman Neural Networks --- event-based consensus --- hierarchical leader–follower network --- hierarchical event-based control --- layer-to-layer delays --- microstructure --- carbon fibers --- polyacrylonitrile --- thermal stabilization --- recirculation fan frequency --- IR imaging --- extended-range electric bus --- adaptive-equivalent consumption minimum strategy --- Markov chain --- target driving cycles --- SOC reference curve --- energy management system --- building automation systems --- building energy efficiency --- daytime lighting --- lighting control systems --- EN 15232 standard --- four-wheel independent-drive --- electric vehicle --- skid steering --- differential steering --- sliding mode variable structure control --- robustness --- active 4WS system --- hierarchical control --- decoupling --- fractional sliding mode control --- vehicle-to-grid --- EV charging infrastructure --- optimal dispatch --- oil-to-electricity transformation for automobiles --- permanent magnet synchronous motor --- sliding mode control --- motion control --- fractional order --- sliding surface --- composite controller --- intelligent control (IC) --- fuzzy cognitive map (FCM) --- direct expansion air-conditioning (DX A/C) --- nonlinear --- coupling effect --- MIMO --- stability analysis --- Lyapunov function --- fuzzy bidirectional associative memories (FBAMs) --- URT --- multi-train optimization --- steep slope --- electrical network model --- regenerative energy dynamic losses --- Air-Conditioning --- On-Off control --- desert climate --- optimization --- Elman Neural Networks --- event-based consensus --- hierarchical leader–follower network --- hierarchical event-based control --- layer-to-layer delays


Book
Automation, Control and Energy Efficiency in Complex Systems
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is aimed at serving researchers, engineers, scientists, and engineering graduate and PhD students of engineering and physical science together with individuals interested in engineering and science. This book focuses on the application of engineering methods to complex systems including transportation, building, and manufacturing, with approaches representing a wide variety of disciplines of engineering and science. Throughout the book, great emphases are placed on engineering applications of complex systems, as well as the methodologies of automation, including artificial intelligence, automated and intelligent control, energy analysis, energy modelling, energy management, and optimised energy efficiency. The significant impact of recent studies that have been selected for presentation are of high interest in engineering complex systems. An attempt has been made to expose the reading audience of engineers and researchers to a broad range of theoretical and practical topics. The topics contained in the present book are of specific interest to engineers who are seeking expertise in transportation, building, and manufacturing technologies as well as mathematical modelling of complex systems, engineering approaches to engineering complex problems, automation via artificial intelligence methods, automated and intelligent control, and energy systems. The primary audience of this book are researchers, graduate students, and engineers in mechanical engineering, control engineering, computer engineering, electrical engineering, and science disciplines. In particular, the book can be used for training graduate and PhD students as well as senior undergraduate students to enhance their knowledge by taking a graduate or advanced undergraduate course in the areas of complex systems, control systems, energy systems, and engineering applications. The covered research topics are also of interest to engineers and academia who are seeking to expand their expertise in these areas.eng

Keywords

History of engineering & technology --- microstructure --- carbon fibers --- polyacrylonitrile --- thermal stabilization --- recirculation fan frequency --- IR imaging --- extended-range electric bus --- adaptive-equivalent consumption minimum strategy --- Markov chain --- target driving cycles --- SOC reference curve --- energy management system --- building automation systems --- building energy efficiency --- daytime lighting --- lighting control systems --- EN 15232 standard --- four-wheel independent-drive --- electric vehicle --- skid steering --- differential steering --- sliding mode variable structure control --- robustness --- active 4WS system --- hierarchical control --- decoupling --- fractional sliding mode control --- vehicle-to-grid --- EV charging infrastructure --- optimal dispatch --- oil-to-electricity transformation for automobiles --- permanent magnet synchronous motor --- sliding mode control --- motion control --- fractional order --- sliding surface --- composite controller --- intelligent control (IC) --- fuzzy cognitive map (FCM) --- direct expansion air-conditioning (DX A/C) --- nonlinear --- coupling effect --- MIMO --- stability analysis --- Lyapunov function --- fuzzy bidirectional associative memories (FBAMs) --- URT --- multi-train optimization --- steep slope --- electrical network model --- regenerative energy dynamic losses --- Air-Conditioning --- On-Off control --- desert climate --- optimization --- Elman Neural Networks --- event-based consensus --- hierarchical leader–follower network --- hierarchical event-based control --- layer-to-layer delays


Book
Automation, Control and Energy Efficiency in Complex Systems
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is aimed at serving researchers, engineers, scientists, and engineering graduate and PhD students of engineering and physical science together with individuals interested in engineering and science. This book focuses on the application of engineering methods to complex systems including transportation, building, and manufacturing, with approaches representing a wide variety of disciplines of engineering and science. Throughout the book, great emphases are placed on engineering applications of complex systems, as well as the methodologies of automation, including artificial intelligence, automated and intelligent control, energy analysis, energy modelling, energy management, and optimised energy efficiency. The significant impact of recent studies that have been selected for presentation are of high interest in engineering complex systems. An attempt has been made to expose the reading audience of engineers and researchers to a broad range of theoretical and practical topics. The topics contained in the present book are of specific interest to engineers who are seeking expertise in transportation, building, and manufacturing technologies as well as mathematical modelling of complex systems, engineering approaches to engineering complex problems, automation via artificial intelligence methods, automated and intelligent control, and energy systems. The primary audience of this book are researchers, graduate students, and engineers in mechanical engineering, control engineering, computer engineering, electrical engineering, and science disciplines. In particular, the book can be used for training graduate and PhD students as well as senior undergraduate students to enhance their knowledge by taking a graduate or advanced undergraduate course in the areas of complex systems, control systems, energy systems, and engineering applications. The covered research topics are also of interest to engineers and academia who are seeking to expand their expertise in these areas.eng

Keywords

microstructure --- carbon fibers --- polyacrylonitrile --- thermal stabilization --- recirculation fan frequency --- IR imaging --- extended-range electric bus --- adaptive-equivalent consumption minimum strategy --- Markov chain --- target driving cycles --- SOC reference curve --- energy management system --- building automation systems --- building energy efficiency --- daytime lighting --- lighting control systems --- EN 15232 standard --- four-wheel independent-drive --- electric vehicle --- skid steering --- differential steering --- sliding mode variable structure control --- robustness --- active 4WS system --- hierarchical control --- decoupling --- fractional sliding mode control --- vehicle-to-grid --- EV charging infrastructure --- optimal dispatch --- oil-to-electricity transformation for automobiles --- permanent magnet synchronous motor --- sliding mode control --- motion control --- fractional order --- sliding surface --- composite controller --- intelligent control (IC) --- fuzzy cognitive map (FCM) --- direct expansion air-conditioning (DX A/C) --- nonlinear --- coupling effect --- MIMO --- stability analysis --- Lyapunov function --- fuzzy bidirectional associative memories (FBAMs) --- URT --- multi-train optimization --- steep slope --- electrical network model --- regenerative energy dynamic losses --- Air-Conditioning --- On-Off control --- desert climate --- optimization --- Elman Neural Networks --- event-based consensus --- hierarchical leader–follower network --- hierarchical event-based control --- layer-to-layer delays

Listing 1 - 5 of 5
Sort by