Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (1)

2021 (3)

Listing 1 - 4 of 4
Sort by

Book
Titanium Alloys for Biomedical Implants and Devices
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This special issue provides a current snapshot of recent advances and ongoing challenges in the development of titanium alloys for biomedical implants and devices. Titanium offers significant advantages over other materials including higher strength and better biocompatibility. This issue highlights current trends and recent developments, including the uptake of additive manufacturing (3D printing), and approaches to improve processing and performance of titanium alloys for medical applications.

Keywords

History of engineering & technology --- selective laser melting --- gradient structure --- porous biomaterial --- Ti6Al4V --- mechanical properties --- osteoblast --- biomechanics --- dental implant(s) --- in vitro --- systematic reviews --- evidence-based medicine --- atrophic maxilla --- titanium hybrid-plates --- finite element analysis --- biomechanical analysis --- single-point incremental forming --- AHP --- cranioplasty plates --- decision-making --- titanium alloys --- medical devices --- machining --- titanium --- temperature --- strain --- grain refinement --- ultrafine --- nanocrystalline --- mechanical characterization --- press-fit --- primary stability --- Ti-6Al-4V --- additive manufacturing --- selective laser melting (SLM) --- electron beam melting (EBM) --- direct metal deposition (DMD) --- wire and arc additive manufacturing (WAAM) --- diffraction line profile analysis --- extended convolution multiple whole profile (eCMWP) --- implanted electrodes --- electrical stimulation --- corrosion --- mandibular reconstruction --- scaffolds --- reconstruction plate --- 3D printing --- titanium alloy --- Titanium alloys --- Ti-6Al-4V-ELI --- fatigue --- laser cutting --- post-processing --- α’-martensite --- HAZ --- barrel grinding --- notch --- fracture --- selective laser melting --- gradient structure --- porous biomaterial --- Ti6Al4V --- mechanical properties --- osteoblast --- biomechanics --- dental implant(s) --- in vitro --- systematic reviews --- evidence-based medicine --- atrophic maxilla --- titanium hybrid-plates --- finite element analysis --- biomechanical analysis --- single-point incremental forming --- AHP --- cranioplasty plates --- decision-making --- titanium alloys --- medical devices --- machining --- titanium --- temperature --- strain --- grain refinement --- ultrafine --- nanocrystalline --- mechanical characterization --- press-fit --- primary stability --- Ti-6Al-4V --- additive manufacturing --- selective laser melting (SLM) --- electron beam melting (EBM) --- direct metal deposition (DMD) --- wire and arc additive manufacturing (WAAM) --- diffraction line profile analysis --- extended convolution multiple whole profile (eCMWP) --- implanted electrodes --- electrical stimulation --- corrosion --- mandibular reconstruction --- scaffolds --- reconstruction plate --- 3D printing --- titanium alloy --- Titanium alloys --- Ti-6Al-4V-ELI --- fatigue --- laser cutting --- post-processing --- α’-martensite --- HAZ --- barrel grinding --- notch --- fracture


Book
Materials, Design and Process Development for Additive Manufacturing
Author:
ISBN: 3036549285 3036549277 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing is already actively used in various high-tech industries today. At the same time, there is a certain limitation and imperfection of known and widely used conventional materials when they are used in additive manufacturing. In this regard, extensive research and development are aimed at the advancements of new materials by adjusting the chemical compositions of conventional alloys, new equipment with expanded functionality and the ability to work with a wide range of materials that were previously not available for additive manufacturing. This Special Issue covers a wide scope of additive manufacturing processes, comprising investigation, characterization of materials and their properties, development and application of new materials, structures designed for additive manufacturing, as well as processes and techniques that will expand the potential applications of layer-by-layer synthesis.


Book
Titanium Alloys for Biomedical Implants and Devices
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This special issue provides a current snapshot of recent advances and ongoing challenges in the development of titanium alloys for biomedical implants and devices. Titanium offers significant advantages over other materials including higher strength and better biocompatibility. This issue highlights current trends and recent developments, including the uptake of additive manufacturing (3D printing), and approaches to improve processing and performance of titanium alloys for medical applications.


Book
Titanium Alloys for Biomedical Implants and Devices
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This special issue provides a current snapshot of recent advances and ongoing challenges in the development of titanium alloys for biomedical implants and devices. Titanium offers significant advantages over other materials including higher strength and better biocompatibility. This issue highlights current trends and recent developments, including the uptake of additive manufacturing (3D printing), and approaches to improve processing and performance of titanium alloys for medical applications.

Listing 1 - 4 of 4
Sort by