Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Over the last decade, the growth of e-commerce has continued to increase and this phenomenon is not about to stop. Today, providing an exceptional online shopping experience requires improving the entire process (i.e. pre-purchase, purchase and post-purchase). In addition, delivery times seem to be a key factor in satisfying customers who are becoming more and more demanding. Faced with this situation, PFS realized that collaborating with the UPS carrier could reduce delivery times to France and Spain by sending a truck earlier in the day to the UPS distribution centre in Paris. This project-thesis focuses on this new service and in particular for Asics and Clarins clients. The objective is to assess the impacts of a new promise allowing any customer who places an order before noon to benefit from shorter delivery times. First, a review of the scientific literature and other sources of information is carried out in order to understand trends in e-commerce, customers' requirements in terms of delivery times and the improvement of some order fulfilment processes. It appears that fast delivery times increase customers’ satisfaction and loyalty. Then, analyses are performed on the impacts that this new promise has on warehouse operations but also on truck loading capacity. This is achieved through the development of a specific methodology to simulate scenarios associated to peak and off-peak periods. Finally, recommendations are proposed. In general, flexibility is needed in terms of the type(s) of truck(s) to be used. Regarding operations in the warehouse, all orders can be processed with some changes in the start time of outbound operations and the number of workers required. Nevertheless, for a better management of this new service, specific daily forecasts on the number of orders to be shipped should be established. Durant la dernière décennie, la croissance de l’e-commerce n’a cessé d’augmenter et ce phénomène n’est pas près de s’arrêter. Aujourd’hui, fournir une expérience d’achat en ligne exceptionnelle passe par l’amélioration de l’ensemble du processus (c.-à-d. pré-achat, achat et post-achat). De plus, les délais de livraison semblent être un facteur clé de satisfaction chez les consommateurs devenus de plus en plus exigeants. Face à ce constat, PFS s’est rendu compte qu’une collaboration avec le transporteur UPS pouvait permettre de bénéficier d’une diminution des délais de livraison sur la France et l’Espagne en faisant partir un camion plus tôt dans la journée à destination du centre de distribution UPS à Paris. Ce mémoire-projet se concentre sur ce nouveau service et en particulier pour les clients Asics et Clarins. L’objectif est d’évaluer les impacts d’une nouvelle promesse permettant à tout consommateur qui place une commande avant midi de bénéficier de délais de livraison plus courts. Tout d’abord, une revue de la littérature scientifique ainsi que d’autres sources d’informations ont permis de comprendre les tendances dans l’e-commerce, les exigences des consommateurs en termes de délais de livraison et l’amélioration de certains processus d’exécution des commandes. Il ressort que les délais de livraison rapides et à moindres coûts permettraient d’augmenter la satisfaction des consommateurs. Ensuite, des analyses sont effectuées sur l’impact que peut avoir cette nouvelle promesse au point de vue des opérations dans l’entrepôt mais également sur la capacité de chargement des camions. Ceci est rendu possible grâce à l’élaboration d’une méthodologie permettant de simuler des scénarios associés à des périodes spécifiques. Finalement, des recommandations sont proposées. De manière générale, une flexibilité quant aux types de camions à utiliser est nécessaire. En ce qui concerne les opérations, le traitement de toutes les commandes est possible moyennant quelques changements au niveau des heures de début des opérations ainsi que sur le nombre de travailleurs requis. Néanmoins, pour une meilleure gestion de ce nouveau service, des prévisions journalières spécifiques sur le nombre de commandes à expédier doivent être réalisées.
Customer satisfaction, experience and loyalty --- Simulations --- Forecasts --- Order cut-off time --- Injection directe --- Lead time --- Warehouse operations --- Expérience, satisfaction et fidélisation des clients --- Simulations --- Prévisions --- Heure limite de commandes --- Direct injection --- Délais de livraison --- opérations dans un entrepôt --- Sciences économiques & de gestion > Production, distribution & gestion de la chaîne logistique
Choose an application
This Special Issue will highlight the latest advances in numerical modeling of combustion-related applications. With the recent advancements in computational capacities and the widespread use of simulations in engineering problems, numerical methods are becoming increasingly important to improve existing models and develop new models that can help researchers to better understand the underlying mechanisms of combustion, their interaction with other physical phenomena, such as turbulence, and their impacts on the performance of related applications at both fundamental and practical levels.
Technology: general issues --- History of engineering & technology --- gas fire suppression --- inert gas agents --- agent quantity --- discharge rate --- ventilation rate --- premixed combustion --- obstructed channels --- flame acceleration --- thermal expansion --- computational simulations --- machine learning --- soot concentration --- soot emissions --- artificial neural network --- estimator --- computational fluid dynamics --- combustion --- biogas --- hydrogen --- laminar flame speed --- correlation --- jet-and-recirculation stabilized combustion --- OH* measurements --- numerical CFD analysis --- RANS modeling --- detailed chemistry schemes --- heat-loss modeling --- low-calorific combustion --- syngas fuel --- micro-combustion --- syngas --- repetitive extinction and ignition (FREI) --- numerical simulations --- flame instabilities --- flame propagation --- closed spherical bomb --- incipient stage --- methane --- N2O --- flash boiling --- gasoline direct injection --- Spray G --- discrete droplet method --- fuel surrogates --- combustion process --- reactivity model --- synthetic jet fuels --- turbine engines --- two-stroke engine --- multiple injection --- emission --- numerical simulation --- computational fluid dynamic (CFD) --- natural gas --- laminar burning velocity (LBV) --- closed vessel combustion --- numerical study --- microcombustion --- complex geometry --- n/a
Choose an application
Biofuels have recently attracted a lot of attention, mainly as alternative fuels for applications in energy generation and transportation. The utilization of biofuels in such controlled combustion processes has the great advantage of not depleting the limited resources of fossil fuels while leading to emissions of greenhouse gases and smoke particles similar to those of fossil fuels. On the other hand, a vast amount of biofuels are subjected to combustion in small-scale processes, such as for heating and cooking in residential dwellings, as well as in agricultural operations, such as crop residue removal and land clearing. In addition, large amounts of biomass are consumed annually during forest and savanna fires in many parts of the world. These types of burning processes are typically uncontrolled and unregulated. Consequently, the emissions from these processes may be larger compared to industrial-type operations. Aside from direct effects on human health, especially due to a sizeable fraction of the smoke emissions remaining inside residential homes, the smoke particles and gases released from uncontrolled biofuel combustion impose significant effects on the regional and global climate. Estimates have shown the majority of carbonaceous airborne particulate matter to be derived from the combustion of biofuels and biomass. “Production of Biofuels and Numerical Modelling of Chemical Combustion Systems” comprehensively overviews and includes in-depth technical research papers addressing recent progress in biofuel production and combustion processes. To be specific, this book contains sixteen high-quality studies (fifteen research papers and one review paper) addressing techniques and methods for bioenergy and biofuel production as well as challenges in the broad area of process modelling and control in combustion processes.
microalgae --- hydrothermal liquefaction --- pretreatment --- low O and N biocrude --- biodiesel --- esterification --- free fatty acids --- glycerol --- waste cooking oil --- Computational Fluid Dynamics --- two-stroke --- dual-fuel engine --- simulation --- pre-combustion chamber --- internal combustion engine --- particulate matter emissions --- biomorphic silicon carbide --- vegetal waste --- diesel particulate filter --- biocrude --- metal-oxide catalyst --- bioethanol --- dilute acid pretreatment --- enzymatic hydrolysis --- olive stones --- Pachysolen tannophilus --- response surface methodology --- compression ignition --- direct injection --- cryogenic gas --- diesel engines --- dual fuel engines --- natural gas --- greenhouse gas emissions --- particulate matter --- carotenoids --- extremophiles --- microalgal biotechnology --- eucalyptus kraft lignin --- tree leaf --- pellet --- additive --- biofuel --- circular economy --- piston bowl --- alternative fuel --- vanes --- emulsified biofuel --- combustion --- gasification --- olive --- olive oils --- olive-pruning debris --- olive pomaces --- pyrolysis --- biogas --- environmental impact --- life cycle assessment --- olive pomace --- sustainability --- TGA --- hemicellulose --- cellulose --- lignin --- pseudocomponent kinetic model --- biomass --- culture --- scale-up --- Phaeodactylum tricornutum --- burning characteristics --- fatty acid methyl ester --- added water content --- fuel structure --- distillation temperature --- layered double hydroxide --- toluene steam reforming --- tar --- Ni-based catalyst --- hydrotalcite --- hydrogen production --- n/a
Choose an application
This Special Issue will highlight the latest advances in numerical modeling of combustion-related applications. With the recent advancements in computational capacities and the widespread use of simulations in engineering problems, numerical methods are becoming increasingly important to improve existing models and develop new models that can help researchers to better understand the underlying mechanisms of combustion, their interaction with other physical phenomena, such as turbulence, and their impacts on the performance of related applications at both fundamental and practical levels.
gas fire suppression --- inert gas agents --- agent quantity --- discharge rate --- ventilation rate --- premixed combustion --- obstructed channels --- flame acceleration --- thermal expansion --- computational simulations --- machine learning --- soot concentration --- soot emissions --- artificial neural network --- estimator --- computational fluid dynamics --- combustion --- biogas --- hydrogen --- laminar flame speed --- correlation --- jet-and-recirculation stabilized combustion --- OH* measurements --- numerical CFD analysis --- RANS modeling --- detailed chemistry schemes --- heat-loss modeling --- low-calorific combustion --- syngas fuel --- micro-combustion --- syngas --- repetitive extinction and ignition (FREI) --- numerical simulations --- flame instabilities --- flame propagation --- closed spherical bomb --- incipient stage --- methane --- N2O --- flash boiling --- gasoline direct injection --- Spray G --- discrete droplet method --- fuel surrogates --- combustion process --- reactivity model --- synthetic jet fuels --- turbine engines --- two-stroke engine --- multiple injection --- emission --- numerical simulation --- computational fluid dynamic (CFD) --- natural gas --- laminar burning velocity (LBV) --- closed vessel combustion --- numerical study --- microcombustion --- complex geometry --- n/a
Choose an application
This Special Issue will highlight the latest advances in numerical modeling of combustion-related applications. With the recent advancements in computational capacities and the widespread use of simulations in engineering problems, numerical methods are becoming increasingly important to improve existing models and develop new models that can help researchers to better understand the underlying mechanisms of combustion, their interaction with other physical phenomena, such as turbulence, and their impacts on the performance of related applications at both fundamental and practical levels.
Technology: general issues --- History of engineering & technology --- gas fire suppression --- inert gas agents --- agent quantity --- discharge rate --- ventilation rate --- premixed combustion --- obstructed channels --- flame acceleration --- thermal expansion --- computational simulations --- machine learning --- soot concentration --- soot emissions --- artificial neural network --- estimator --- computational fluid dynamics --- combustion --- biogas --- hydrogen --- laminar flame speed --- correlation --- jet-and-recirculation stabilized combustion --- OH* measurements --- numerical CFD analysis --- RANS modeling --- detailed chemistry schemes --- heat-loss modeling --- low-calorific combustion --- syngas fuel --- micro-combustion --- syngas --- repetitive extinction and ignition (FREI) --- numerical simulations --- flame instabilities --- flame propagation --- closed spherical bomb --- incipient stage --- methane --- N2O --- flash boiling --- gasoline direct injection --- Spray G --- discrete droplet method --- fuel surrogates --- combustion process --- reactivity model --- synthetic jet fuels --- turbine engines --- two-stroke engine --- multiple injection --- emission --- numerical simulation --- computational fluid dynamic (CFD) --- natural gas --- laminar burning velocity (LBV) --- closed vessel combustion --- numerical study --- microcombustion --- complex geometry
Choose an application
Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.
MgH2 --- vertically oriented graphene --- gas loss --- concentrated solar power (CSP) --- complex hydrides --- PCM roof --- hydrogen storage systems --- slag --- bubbles transportation --- dye-sensitized solar cells --- undercooling --- methanogenesis --- electrochemical energy storage --- hydrogen storage --- Fischer–Tropsch --- state of charge estimator --- gas turbine engine --- simplified electrochemical model --- hot summer and cold winter area --- rock permeability --- flutter instability --- charge density --- binder --- salt cavern energy storage --- battery energy storage system --- capacitance --- LiNH2 --- ball milling --- production rate --- leaching tubing --- quality function deployment (QFD) --- nanocatalyst --- lab-scale --- thermal energy storage (TES) --- comprehensive incremental benefit --- lean direct injection --- Li-ion batteries --- separator --- four-point --- salt cavern --- low emissions combustion --- ionic liquid --- carbon materials --- nanocomposite materials --- electrical double layers --- recovery factor --- thermochemical energy storage --- Klinkenberg method --- flow-induced vibration --- cathode --- porous media --- metal hydride --- aquifer size --- diffusion --- auxiliary services compensation --- water invasion --- conjugate phase change heat transfer --- heat transfer enhancement --- failure mode and effect analysis (FMEA) --- magnetism --- carbonate gas reservoirs --- equivalent loss of cycle life --- internal and reverse external axial flows --- thermal energy storage --- lithium-ion batteries --- bacterial sulfate reduction --- crystal growth rates --- optimal capacity --- gas storage --- energy discharge --- anode --- Ag nanoparticles --- regenerator --- hydrogen absorption --- freestanding TiO2 nanotube arrays --- material science --- extended kalman filter --- reactive transport modeling --- synthetic rock salt testing --- hydrogen energy storage --- lattice Boltzmann method --- dynamic modeling --- bubbles burst --- Power to Liquid --- large-scale wind farm --- PHREEQC
Choose an application
This book serves to highlight the pharmacokinetics/drug–drug interactions and mechanistic understanding in relation to the drug-metabolizing enzymes and drug transporters.This book presents a series of drug metabolism and transport mechanisms that govern the pharmacokinetic features of therapeutic drugs as well as natural herbal medicines. It also covers the pharmacokinetic interactions caused by inhibiting or inducing the metabolic or transport activities under disease states or the coadministration of potential inhibitors. It also deals with microenvironmental pharmacokinetic profiles as well as population pharmacokinetics, which gives new insights regarding the pharmacokinetic features with regard to drug metabolism and transporters.
tofacitinib --- dose-dependent pharmacokinetics --- hepatic and intestinal first-pass effect --- rats --- catalposide --- in vitro human metabolism --- UDP-glucuronosyltransferase --- sulfotransferase --- carboxylesterase --- celecoxib --- drug–drug interaction --- fluorescence --- HPLC --- metabolism --- repaglinide --- HSG4112 --- anti-obesity agent --- stereoselectivity --- pharmacokinetics --- compound K --- protopanaxadiol (PPD) --- biliary excretion --- intestinal metabolism --- Carthamus tinctorius extract --- notoginseng total saponins --- comparative pharmacokinetic study --- large volume direct injection --- compatibility mechanism --- mertansine --- human hepatocytes --- cytochrome P450 --- UDP-glucuronosyltransferases --- sodium-glucose cotransporter 2 (SGLT2) inhibitors --- DWP16001 --- kidney distribution --- inhibition mode --- diabetes --- transporter-enzyme interplay --- influx transporter --- efflux transporter --- physiologically based pharmacokinetic model --- cytochrome P450 enzymes --- tiropramide --- healthy Korean subjects --- modeling --- population pharmacokinetic --- quercetin --- breast cancer resistance protein --- inhibitor --- prazosin --- sulfasalazine --- kinetic analysis --- food–drug interactions --- Caco-2 --- EpiIntestinal --- first-pass --- P-gp --- BCRP --- drug transporter --- CYP3A4 --- oral availability --- automatization --- drug absorption --- drug dosing --- head-and-neck cancer --- real-time measurements --- taxanes --- tissue engineering --- UHPLC-MS/MS --- metformin --- verapamil --- drug interaction --- organic cation transporter 2 --- renal excretion --- acute renal failure --- gentamicin --- cisplatin --- hepatic CYP3A1(23) --- creatinine clearance --- renal clearance --- nonrenal clearance
Choose an application
Biofuels have recently attracted a lot of attention, mainly as alternative fuels for applications in energy generation and transportation. The utilization of biofuels in such controlled combustion processes has the great advantage of not depleting the limited resources of fossil fuels while leading to emissions of greenhouse gases and smoke particles similar to those of fossil fuels. On the other hand, a vast amount of biofuels are subjected to combustion in small-scale processes, such as for heating and cooking in residential dwellings, as well as in agricultural operations, such as crop residue removal and land clearing. In addition, large amounts of biomass are consumed annually during forest and savanna fires in many parts of the world. These types of burning processes are typically uncontrolled and unregulated. Consequently, the emissions from these processes may be larger compared to industrial-type operations. Aside from direct effects on human health, especially due to a sizeable fraction of the smoke emissions remaining inside residential homes, the smoke particles and gases released from uncontrolled biofuel combustion impose significant effects on the regional and global climate. Estimates have shown the majority of carbonaceous airborne particulate matter to be derived from the combustion of biofuels and biomass. “Production of Biofuels and Numerical Modelling of Chemical Combustion Systems” comprehensively overviews and includes in-depth technical research papers addressing recent progress in biofuel production and combustion processes. To be specific, this book contains sixteen high-quality studies (fifteen research papers and one review paper) addressing techniques and methods for bioenergy and biofuel production as well as challenges in the broad area of process modelling and control in combustion processes.
Research & information: general --- Technology: general issues --- microalgae --- hydrothermal liquefaction --- pretreatment --- low O and N biocrude --- biodiesel --- esterification --- free fatty acids --- glycerol --- waste cooking oil --- Computational Fluid Dynamics --- two-stroke --- dual-fuel engine --- simulation --- pre-combustion chamber --- internal combustion engine --- particulate matter emissions --- biomorphic silicon carbide --- vegetal waste --- diesel particulate filter --- biocrude --- metal-oxide catalyst --- bioethanol --- dilute acid pretreatment --- enzymatic hydrolysis --- olive stones --- Pachysolen tannophilus --- response surface methodology --- compression ignition --- direct injection --- cryogenic gas --- diesel engines --- dual fuel engines --- natural gas --- greenhouse gas emissions --- particulate matter --- carotenoids --- extremophiles --- microalgal biotechnology --- eucalyptus kraft lignin --- tree leaf --- pellet --- additive --- biofuel --- circular economy --- piston bowl --- alternative fuel --- vanes --- emulsified biofuel --- combustion --- gasification --- olive --- olive oils --- olive-pruning debris --- olive pomaces --- pyrolysis --- biogas --- environmental impact --- life cycle assessment --- olive pomace --- sustainability --- TGA --- hemicellulose --- cellulose --- lignin --- pseudocomponent kinetic model --- biomass --- culture --- scale-up --- Phaeodactylum tricornutum --- burning characteristics --- fatty acid methyl ester --- added water content --- fuel structure --- distillation temperature --- layered double hydroxide --- toluene steam reforming --- tar --- Ni-based catalyst --- hydrotalcite --- hydrogen production
Choose an application
This book serves to highlight the pharmacokinetics/drug–drug interactions and mechanistic understanding in relation to the drug-metabolizing enzymes and drug transporters.This book presents a series of drug metabolism and transport mechanisms that govern the pharmacokinetic features of therapeutic drugs as well as natural herbal medicines. It also covers the pharmacokinetic interactions caused by inhibiting or inducing the metabolic or transport activities under disease states or the coadministration of potential inhibitors. It also deals with microenvironmental pharmacokinetic profiles as well as population pharmacokinetics, which gives new insights regarding the pharmacokinetic features with regard to drug metabolism and transporters.
Medicine --- Pharmaceutical industries --- tofacitinib --- dose-dependent pharmacokinetics --- hepatic and intestinal first-pass effect --- rats --- catalposide --- in vitro human metabolism --- UDP-glucuronosyltransferase --- sulfotransferase --- carboxylesterase --- celecoxib --- drug–drug interaction --- fluorescence --- HPLC --- metabolism --- repaglinide --- HSG4112 --- anti-obesity agent --- stereoselectivity --- pharmacokinetics --- compound K --- protopanaxadiol (PPD) --- biliary excretion --- intestinal metabolism --- Carthamus tinctorius extract --- notoginseng total saponins --- comparative pharmacokinetic study --- large volume direct injection --- compatibility mechanism --- mertansine --- human hepatocytes --- cytochrome P450 --- UDP-glucuronosyltransferases --- sodium-glucose cotransporter 2 (SGLT2) inhibitors --- DWP16001 --- kidney distribution --- inhibition mode --- diabetes --- transporter-enzyme interplay --- influx transporter --- efflux transporter --- physiologically based pharmacokinetic model --- cytochrome P450 enzymes --- tiropramide --- healthy Korean subjects --- modeling --- population pharmacokinetic --- quercetin --- breast cancer resistance protein --- inhibitor --- prazosin --- sulfasalazine --- kinetic analysis --- food–drug interactions --- Caco-2 --- EpiIntestinal --- first-pass --- P-gp --- BCRP --- drug transporter --- CYP3A4 --- oral availability --- automatization --- drug absorption --- drug dosing --- head-and-neck cancer --- real-time measurements --- taxanes --- tissue engineering --- UHPLC-MS/MS --- metformin --- verapamil --- drug interaction --- organic cation transporter 2 --- renal excretion --- acute renal failure --- gentamicin --- cisplatin --- hepatic CYP3A1(23) --- creatinine clearance --- renal clearance --- nonrenal clearance
Listing 1 - 9 of 9 |
Sort by
|