Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Sight is the dominant sense of mankind to apprehend the world at the earth scale and beyond the frontiers of the infinite, from the nanometer to the incommensurable. Primarily based on sunlight and natural and artificial light sources, optics has been the major companion of spectroscopy since scientific observation began. The invention of the laser in the early sixties has boosted optical spectroscopy through the intrinsic or specific symmetry electronic properties of materials at the multiscale (birefringence, nonlinear and photonic crystals), revealed by the ability to monitor light polarization inside or on the surface of designed objects. This Special Issue of Symmetry features articles and reviews that are of tremendous interest to scientists who study linear and nonlinear optics, all oriented around the common axis of symmetry. Contributions transverse the entire breadth of this field, including those concerning polarization and anisotropy within colloids of chromophores and metal/semiconducting nanoparticles probed by UV-visible and fluorescence spectroscopies; microscopic structures of liquid–liquid, liquid–gas, and liquid–solid interfaces; surface- and symmetry-specific optical techniques and simulations, including second-harmonic and sum-frequency generations, and surface-enhanced and coherent anti-Stokes Raman spectroscopies; orientation and chirality of bio-molecular interfaces; symmetry breaking in photochemistry; symmetric multipolar molecules; reversible electronic energy transfer within supramolecular systems; plasmonics; and light polarization effects in materials.
Information technology industries --- Computer science --- symmetry breaking --- chiral plasmonics --- non-linear optics --- plasmonic devices --- plasmonic sensing --- plasmonics --- LSPR scattering --- polarisation manipulation --- metamaterials --- Faraday effect (rotation) --- magneto-optic Kerr effect (MOKE) --- magnetoplasmonics --- molecular orientation --- spectral unmixing --- infrared absorption --- visible-infrared sum-frequency generation --- Raman scattering --- linear programming --- centrosymmetry --- spectroscopy --- selection rules --- infrared --- Raman --- sum-frequency generation --- interfaces --- molecules --- nanoparticles --- molecular aggregates --- second harmonic generation --- hyper rayleigh scattering --- second harmonic scattering --- light polarizatio --- quantum dots --- phenyl derivative --- UV–Visible spectroscopy --- sum-frequency generation spectroscopy --- dipole–dipole interaction --- polyoxometalates --- donor/acceptor substituents --- first hyperpolarizability --- (time-dependent) DFT --- n/a --- UV-Visible spectroscopy --- dipole-dipole interaction
Choose an application
Sight is the dominant sense of mankind to apprehend the world at the earth scale and beyond the frontiers of the infinite, from the nanometer to the incommensurable. Primarily based on sunlight and natural and artificial light sources, optics has been the major companion of spectroscopy since scientific observation began. The invention of the laser in the early sixties has boosted optical spectroscopy through the intrinsic or specific symmetry electronic properties of materials at the multiscale (birefringence, nonlinear and photonic crystals), revealed by the ability to monitor light polarization inside or on the surface of designed objects. This Special Issue of Symmetry features articles and reviews that are of tremendous interest to scientists who study linear and nonlinear optics, all oriented around the common axis of symmetry. Contributions transverse the entire breadth of this field, including those concerning polarization and anisotropy within colloids of chromophores and metal/semiconducting nanoparticles probed by UV-visible and fluorescence spectroscopies; microscopic structures of liquid–liquid, liquid–gas, and liquid–solid interfaces; surface- and symmetry-specific optical techniques and simulations, including second-harmonic and sum-frequency generations, and surface-enhanced and coherent anti-Stokes Raman spectroscopies; orientation and chirality of bio-molecular interfaces; symmetry breaking in photochemistry; symmetric multipolar molecules; reversible electronic energy transfer within supramolecular systems; plasmonics; and light polarization effects in materials.
symmetry breaking --- chiral plasmonics --- non-linear optics --- plasmonic devices --- plasmonic sensing --- plasmonics --- LSPR scattering --- polarisation manipulation --- metamaterials --- Faraday effect (rotation) --- magneto-optic Kerr effect (MOKE) --- magnetoplasmonics --- molecular orientation --- spectral unmixing --- infrared absorption --- visible-infrared sum-frequency generation --- Raman scattering --- linear programming --- centrosymmetry --- spectroscopy --- selection rules --- infrared --- Raman --- sum-frequency generation --- interfaces --- molecules --- nanoparticles --- molecular aggregates --- second harmonic generation --- hyper rayleigh scattering --- second harmonic scattering --- light polarizatio --- quantum dots --- phenyl derivative --- UV–Visible spectroscopy --- sum-frequency generation spectroscopy --- dipole–dipole interaction --- polyoxometalates --- donor/acceptor substituents --- first hyperpolarizability --- (time-dependent) DFT --- n/a --- UV-Visible spectroscopy --- dipole-dipole interaction
Choose an application
Sight is the dominant sense of mankind to apprehend the world at the earth scale and beyond the frontiers of the infinite, from the nanometer to the incommensurable. Primarily based on sunlight and natural and artificial light sources, optics has been the major companion of spectroscopy since scientific observation began. The invention of the laser in the early sixties has boosted optical spectroscopy through the intrinsic or specific symmetry electronic properties of materials at the multiscale (birefringence, nonlinear and photonic crystals), revealed by the ability to monitor light polarization inside or on the surface of designed objects. This Special Issue of Symmetry features articles and reviews that are of tremendous interest to scientists who study linear and nonlinear optics, all oriented around the common axis of symmetry. Contributions transverse the entire breadth of this field, including those concerning polarization and anisotropy within colloids of chromophores and metal/semiconducting nanoparticles probed by UV-visible and fluorescence spectroscopies; microscopic structures of liquid–liquid, liquid–gas, and liquid–solid interfaces; surface- and symmetry-specific optical techniques and simulations, including second-harmonic and sum-frequency generations, and surface-enhanced and coherent anti-Stokes Raman spectroscopies; orientation and chirality of bio-molecular interfaces; symmetry breaking in photochemistry; symmetric multipolar molecules; reversible electronic energy transfer within supramolecular systems; plasmonics; and light polarization effects in materials.
Information technology industries --- Computer science --- symmetry breaking --- chiral plasmonics --- non-linear optics --- plasmonic devices --- plasmonic sensing --- plasmonics --- LSPR scattering --- polarisation manipulation --- metamaterials --- Faraday effect (rotation) --- magneto-optic Kerr effect (MOKE) --- magnetoplasmonics --- molecular orientation --- spectral unmixing --- infrared absorption --- visible-infrared sum-frequency generation --- Raman scattering --- linear programming --- centrosymmetry --- spectroscopy --- selection rules --- infrared --- Raman --- sum-frequency generation --- interfaces --- molecules --- nanoparticles --- molecular aggregates --- second harmonic generation --- hyper rayleigh scattering --- second harmonic scattering --- light polarizatio --- quantum dots --- phenyl derivative --- UV-Visible spectroscopy --- sum-frequency generation spectroscopy --- dipole-dipole interaction --- polyoxometalates --- donor/acceptor substituents --- first hyperpolarizability --- (time-dependent) DFT
Choose an application
The book collects nine original contributions in the field of integrated geophysical methods for the characterization and modeling of shallow aquifers. The first contribution introduces the following eight contributions into the overall framework of the topic. The second contribution integrates seismic and electrical techniques to define geometry and identify the transient groundwater features in a coastal alluvial aquifer. The third contribution assesses the effectiveness of electrical and electromagnetic techniques to study the geometry of a thick carbonate aquifer. The fourth contribution couples electrical techniques with implicit modeling tools to characterize the geometry and saltwater intrusion in a coastal alluvial aquifers. The fifth contribution combines electrical techniques and datasets from borehole logs to analyze the inner geometry of a gravel-bed ephemeral stream. The sixth contribution uses electromagnetic and seismic techniques to evaluate the groundwater resource in a coastal town hydrologically influenced by peri-urban irrigation agriculture. The seventh contribution uses geophysical and hydrochemical data to assess groundwater contamination in an industrial chemical complex. The eighth contribution compiles and examines different geophysical prospecting surveys of interest in groundwater research in a large urban area. The ninth contribution uses electrical and electromagnetic techniques to assess surface water and shallow groundwater salinity in a coastal groundwater-dependent ecosystem.
Research & information: general --- multichannel analysis of surface waves --- electrical resistivity tomography --- time-lapse inversion --- aquifer geometry --- groundwater-dependent ecosystem --- Santo André Lagoon --- Portugal --- Jurassic dolomite aquifer --- seismic reflection --- time-domain electromagnetic --- loma de Úbeda --- Spain --- managed aquifer recharge --- saltwater intrusion --- soil aquifer treatment --- sustainable development goal 6 --- deposition patterns --- climate change --- ephemeral gravel-bed stream --- borehole samples --- urban hydrogeology --- hydrogeological map --- ground penetrating radar --- groundwater resource evaluation --- Adra town --- groundwater --- contamination --- time-space --- geophysics --- hydrochemistry --- geophysical prospecting techniques --- groundwater research --- urban water supply --- Metropolitan District of Quito --- Ecuador --- Everglades National Park (ENP) --- electrical resistivity --- electromagnetism --- formation factor --- salinity and constrained inversion --- dipole-dipole --- fractures --- saprolite --- pumping well --- Federal district of Brazil
Choose an application
The book collects nine original contributions in the field of integrated geophysical methods for the characterization and modeling of shallow aquifers. The first contribution introduces the following eight contributions into the overall framework of the topic. The second contribution integrates seismic and electrical techniques to define geometry and identify the transient groundwater features in a coastal alluvial aquifer. The third contribution assesses the effectiveness of electrical and electromagnetic techniques to study the geometry of a thick carbonate aquifer. The fourth contribution couples electrical techniques with implicit modeling tools to characterize the geometry and saltwater intrusion in a coastal alluvial aquifers. The fifth contribution combines electrical techniques and datasets from borehole logs to analyze the inner geometry of a gravel-bed ephemeral stream. The sixth contribution uses electromagnetic and seismic techniques to evaluate the groundwater resource in a coastal town hydrologically influenced by peri-urban irrigation agriculture. The seventh contribution uses geophysical and hydrochemical data to assess groundwater contamination in an industrial chemical complex. The eighth contribution compiles and examines different geophysical prospecting surveys of interest in groundwater research in a large urban area. The ninth contribution uses electrical and electromagnetic techniques to assess surface water and shallow groundwater salinity in a coastal groundwater-dependent ecosystem.
Research & information: general --- multichannel analysis of surface waves --- electrical resistivity tomography --- time-lapse inversion --- aquifer geometry --- groundwater-dependent ecosystem --- Santo André Lagoon --- Portugal --- Jurassic dolomite aquifer --- seismic reflection --- time-domain electromagnetic --- loma de Úbeda --- Spain --- managed aquifer recharge --- saltwater intrusion --- soil aquifer treatment --- sustainable development goal 6 --- deposition patterns --- climate change --- ephemeral gravel-bed stream --- borehole samples --- urban hydrogeology --- hydrogeological map --- ground penetrating radar --- groundwater resource evaluation --- Adra town --- groundwater --- contamination --- time-space --- geophysics --- hydrochemistry --- geophysical prospecting techniques --- groundwater research --- urban water supply --- Metropolitan District of Quito --- Ecuador --- Everglades National Park (ENP) --- electrical resistivity --- electromagnetism --- formation factor --- salinity and constrained inversion --- n/a --- dipole-dipole --- fractures --- saprolite --- pumping well --- Federal district of Brazil --- Santo André Lagoon --- loma de Úbeda
Choose an application
The book collects nine original contributions in the field of integrated geophysical methods for the characterization and modeling of shallow aquifers. The first contribution introduces the following eight contributions into the overall framework of the topic. The second contribution integrates seismic and electrical techniques to define geometry and identify the transient groundwater features in a coastal alluvial aquifer. The third contribution assesses the effectiveness of electrical and electromagnetic techniques to study the geometry of a thick carbonate aquifer. The fourth contribution couples electrical techniques with implicit modeling tools to characterize the geometry and saltwater intrusion in a coastal alluvial aquifers. The fifth contribution combines electrical techniques and datasets from borehole logs to analyze the inner geometry of a gravel-bed ephemeral stream. The sixth contribution uses electromagnetic and seismic techniques to evaluate the groundwater resource in a coastal town hydrologically influenced by peri-urban irrigation agriculture. The seventh contribution uses geophysical and hydrochemical data to assess groundwater contamination in an industrial chemical complex. The eighth contribution compiles and examines different geophysical prospecting surveys of interest in groundwater research in a large urban area. The ninth contribution uses electrical and electromagnetic techniques to assess surface water and shallow groundwater salinity in a coastal groundwater-dependent ecosystem.
multichannel analysis of surface waves --- electrical resistivity tomography --- time-lapse inversion --- aquifer geometry --- groundwater-dependent ecosystem --- Santo André Lagoon --- Portugal --- Jurassic dolomite aquifer --- seismic reflection --- time-domain electromagnetic --- loma de Úbeda --- Spain --- managed aquifer recharge --- saltwater intrusion --- soil aquifer treatment --- sustainable development goal 6 --- deposition patterns --- climate change --- ephemeral gravel-bed stream --- borehole samples --- urban hydrogeology --- hydrogeological map --- ground penetrating radar --- groundwater resource evaluation --- Adra town --- groundwater --- contamination --- time-space --- geophysics --- hydrochemistry --- geophysical prospecting techniques --- groundwater research --- urban water supply --- Metropolitan District of Quito --- Ecuador --- Everglades National Park (ENP) --- electrical resistivity --- electromagnetism --- formation factor --- salinity and constrained inversion --- n/a --- dipole-dipole --- fractures --- saprolite --- pumping well --- Federal district of Brazil --- Santo André Lagoon --- loma de Úbeda
Listing 1 - 6 of 6 |
Sort by
|