Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Due to their distinctive properties, ionic liquids have attracted the great and unflagging interest of researchers for over 30 years. This interest has been focused mainly on their use as a green alternative to volatile organic solvents. However, they often act not only as solvents but also as catalysts, catalyst immobilizers and initiators. Over 100 types of chemical reactions are known in which ionic liquids (ILs) were applied successfully. This Special Issue is aimed at showing the most recent advances and trends in the design, synthesis and characterization of catalysts based on ILs, as well as presenting their activity and application potential.
Technology: general issues --- oxidation --- N-hydroxyphthalimide --- immobilization --- ionic liquids --- SCILL --- plasticizers --- acidic catalysis --- terephthalate esters --- ortho-phthalate esters --- esterification --- solvents --- hydrosilylation --- alkynes --- heterogeneous catalysis --- rhodium catalysts --- cellulose --- deep eutectic solvents --- 5-HMF --- biphasic system --- homogeneous catalysis --- supercritical CO2 --- borylative coupling --- catalyst recycling --- green chemistry --- ruthenium catalyst --- vinyl boronates --- organoboron compounds --- biomass --- microwaves --- Michael reaction --- chalcone --- dimethylmalonate --- biphasic catalysis --- platinum complexes --- acidic ionic liquid --- Eucalyptus wood --- furfural --- levulinic acid --- supported ionic liquid catalyst (SILCA) --- palladium --- Heck reaction --- catalyst screening --- optimization --- hydrothermal liquefaction of cellulose --- cellulose recovery and bleaching --- paper industry sludge --- municipal primary sludge --- value-added chemicals --- ionic liquid --- heterogeneous catalyst --- SILPC --- porous ionic liquids --- supported ionic liquid phase --- n/a
Choose an application
Due to their distinctive properties, ionic liquids have attracted the great and unflagging interest of researchers for over 30 years. This interest has been focused mainly on their use as a green alternative to volatile organic solvents. However, they often act not only as solvents but also as catalysts, catalyst immobilizers and initiators. Over 100 types of chemical reactions are known in which ionic liquids (ILs) were applied successfully. This Special Issue is aimed at showing the most recent advances and trends in the design, synthesis and characterization of catalysts based on ILs, as well as presenting their activity and application potential.
oxidation --- N-hydroxyphthalimide --- immobilization --- ionic liquids --- SCILL --- plasticizers --- acidic catalysis --- terephthalate esters --- ortho-phthalate esters --- esterification --- solvents --- hydrosilylation --- alkynes --- heterogeneous catalysis --- rhodium catalysts --- cellulose --- deep eutectic solvents --- 5-HMF --- biphasic system --- homogeneous catalysis --- supercritical CO2 --- borylative coupling --- catalyst recycling --- green chemistry --- ruthenium catalyst --- vinyl boronates --- organoboron compounds --- biomass --- microwaves --- Michael reaction --- chalcone --- dimethylmalonate --- biphasic catalysis --- platinum complexes --- acidic ionic liquid --- Eucalyptus wood --- furfural --- levulinic acid --- supported ionic liquid catalyst (SILCA) --- palladium --- Heck reaction --- catalyst screening --- optimization --- hydrothermal liquefaction of cellulose --- cellulose recovery and bleaching --- paper industry sludge --- municipal primary sludge --- value-added chemicals --- ionic liquid --- heterogeneous catalyst --- SILPC --- porous ionic liquids --- supported ionic liquid phase --- n/a
Choose an application
Due to their distinctive properties, ionic liquids have attracted the great and unflagging interest of researchers for over 30 years. This interest has been focused mainly on their use as a green alternative to volatile organic solvents. However, they often act not only as solvents but also as catalysts, catalyst immobilizers and initiators. Over 100 types of chemical reactions are known in which ionic liquids (ILs) were applied successfully. This Special Issue is aimed at showing the most recent advances and trends in the design, synthesis and characterization of catalysts based on ILs, as well as presenting their activity and application potential.
Technology: general issues --- oxidation --- N-hydroxyphthalimide --- immobilization --- ionic liquids --- SCILL --- plasticizers --- acidic catalysis --- terephthalate esters --- ortho-phthalate esters --- esterification --- solvents --- hydrosilylation --- alkynes --- heterogeneous catalysis --- rhodium catalysts --- cellulose --- deep eutectic solvents --- 5-HMF --- biphasic system --- homogeneous catalysis --- supercritical CO2 --- borylative coupling --- catalyst recycling --- green chemistry --- ruthenium catalyst --- vinyl boronates --- organoboron compounds --- biomass --- microwaves --- Michael reaction --- chalcone --- dimethylmalonate --- biphasic catalysis --- platinum complexes --- acidic ionic liquid --- Eucalyptus wood --- furfural --- levulinic acid --- supported ionic liquid catalyst (SILCA) --- palladium --- Heck reaction --- catalyst screening --- optimization --- hydrothermal liquefaction of cellulose --- cellulose recovery and bleaching --- paper industry sludge --- municipal primary sludge --- value-added chemicals --- ionic liquid --- heterogeneous catalyst --- SILPC --- porous ionic liquids --- supported ionic liquid phase
Listing 1 - 3 of 3 |
Sort by
|