Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware.
Technology: general issues --- History of engineering & technology --- wake-up receiver --- digital controller --- reliability --- electronic toll collection (ETC) system --- dedicated short range communication (DSRC) --- temperature compensation --- piezoresistive --- pressure sensor --- negative temperature coefficient --- ACE-Q100 --- CMOS --- epilepsy --- seizure --- multichannel neural recording --- feature extraction --- closed-loop neurostimulator --- low-power --- low-noise amplifier --- implantable medical device --- switched capacitor --- voltage converter --- wide load range --- multiphase operation --- variable frequency --- integrated circuits --- EEPROM reprogrammable fuses --- memory cells --- trimming techniques with fuses --- digital temperature sensor --- temperature sensor with digital serial interface --- asynchronous control logic --- successive approximation register (SAR) --- wireless access in vehicular environments (WAVE) --- low power consumption --- capacitive digital to analog converter (CDAC) --- CMOS neural amplifier --- AC coupling --- pseudoresistor --- nonlinear distortion --- area-efficient design --- sensor node --- power mode --- wireless sensor networks --- power management --- spiking neural network --- leaky integrate and fire --- neuromorphic --- artificial neural networks --- artificial intelligence --- image classification --- capacitance-to-digital converter --- iterative-delay-chain discharge --- CMOS capacitive sensor interface
Choose an application
Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware.
wake-up receiver --- digital controller --- reliability --- electronic toll collection (ETC) system --- dedicated short range communication (DSRC) --- temperature compensation --- piezoresistive --- pressure sensor --- negative temperature coefficient --- ACE-Q100 --- CMOS --- epilepsy --- seizure --- multichannel neural recording --- feature extraction --- closed-loop neurostimulator --- low-power --- low-noise amplifier --- implantable medical device --- switched capacitor --- voltage converter --- wide load range --- multiphase operation --- variable frequency --- integrated circuits --- EEPROM reprogrammable fuses --- memory cells --- trimming techniques with fuses --- digital temperature sensor --- temperature sensor with digital serial interface --- asynchronous control logic --- successive approximation register (SAR) --- wireless access in vehicular environments (WAVE) --- low power consumption --- capacitive digital to analog converter (CDAC) --- CMOS neural amplifier --- AC coupling --- pseudoresistor --- nonlinear distortion --- area-efficient design --- sensor node --- power mode --- wireless sensor networks --- power management --- spiking neural network --- leaky integrate and fire --- neuromorphic --- artificial neural networks --- artificial intelligence --- image classification --- capacitance-to-digital converter --- iterative-delay-chain discharge --- CMOS capacitive sensor interface
Choose an application
Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware.
Technology: general issues --- History of engineering & technology --- wake-up receiver --- digital controller --- reliability --- electronic toll collection (ETC) system --- dedicated short range communication (DSRC) --- temperature compensation --- piezoresistive --- pressure sensor --- negative temperature coefficient --- ACE-Q100 --- CMOS --- epilepsy --- seizure --- multichannel neural recording --- feature extraction --- closed-loop neurostimulator --- low-power --- low-noise amplifier --- implantable medical device --- switched capacitor --- voltage converter --- wide load range --- multiphase operation --- variable frequency --- integrated circuits --- EEPROM reprogrammable fuses --- memory cells --- trimming techniques with fuses --- digital temperature sensor --- temperature sensor with digital serial interface --- asynchronous control logic --- successive approximation register (SAR) --- wireless access in vehicular environments (WAVE) --- low power consumption --- capacitive digital to analog converter (CDAC) --- CMOS neural amplifier --- AC coupling --- pseudoresistor --- nonlinear distortion --- area-efficient design --- sensor node --- power mode --- wireless sensor networks --- power management --- spiking neural network --- leaky integrate and fire --- neuromorphic --- artificial neural networks --- artificial intelligence --- image classification --- capacitance-to-digital converter --- iterative-delay-chain discharge --- CMOS capacitive sensor interface --- wake-up receiver --- digital controller --- reliability --- electronic toll collection (ETC) system --- dedicated short range communication (DSRC) --- temperature compensation --- piezoresistive --- pressure sensor --- negative temperature coefficient --- ACE-Q100 --- CMOS --- epilepsy --- seizure --- multichannel neural recording --- feature extraction --- closed-loop neurostimulator --- low-power --- low-noise amplifier --- implantable medical device --- switched capacitor --- voltage converter --- wide load range --- multiphase operation --- variable frequency --- integrated circuits --- EEPROM reprogrammable fuses --- memory cells --- trimming techniques with fuses --- digital temperature sensor --- temperature sensor with digital serial interface --- asynchronous control logic --- successive approximation register (SAR) --- wireless access in vehicular environments (WAVE) --- low power consumption --- capacitive digital to analog converter (CDAC) --- CMOS neural amplifier --- AC coupling --- pseudoresistor --- nonlinear distortion --- area-efficient design --- sensor node --- power mode --- wireless sensor networks --- power management --- spiking neural network --- leaky integrate and fire --- neuromorphic --- artificial neural networks --- artificial intelligence --- image classification --- capacitance-to-digital converter --- iterative-delay-chain discharge --- CMOS capacitive sensor interface
Choose an application
Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.
single event effects --- n/a --- radiation-hardening-by-design (RHBD) --- frequency divider by two --- single event upset --- Image processing --- CMOS analog integrated circuits --- FPGA --- total ionizing dose (TID) --- Impulse Sensitive Function --- soft error --- hardening by design --- radiation hardening by design --- X-rays --- Single-Event Upsets (SEUs) --- line buffer --- heavy ions --- VHDL --- FPGA-based digital controller --- radiation hardening by design (RHBD) --- radiation hardening --- SRAM-based FPGA --- proton irradiation --- ring oscillator --- sensor readout IC --- fault tolerance --- space application --- physical unclonable function --- voltage controlled oscillator (VCO) --- Ring Oscillators --- analog single-event transient (ASET) --- single event opset (SEU) --- SEB --- single event upsets --- bipolar transistor --- total ionizing dose --- protons --- triple modular redundancy (TMR) --- gain degradation --- space electronics --- saturation effect --- configuration memory --- Co-60 gamma radiation --- total ionization dose (TID) --- frequency synthesizers --- CMOS --- PLL --- TDC --- single-event upsets (SEUs) --- bandgap voltage reference (BGR) --- 4MR --- single-shot --- error rates --- Radiation Hardening by Design --- soft errors --- heavy-ions --- single-event effects (SEE) --- single event transient (SET) --- SEE testing --- proton irradiation effects --- RFIC --- single event upset (SEU) --- FMR --- ionization --- radiation tolerant --- triplex–duplex --- neutron irradiation effects --- digital integrated circuits --- single event gate rupture (SEGR) --- power MOSFETs --- ring-oscillator --- selective hardening --- voltage reference --- nuclear fusion --- TMR --- gamma-rays --- gamma ray --- instrumentation amplifier --- radiation effects --- reference circuits --- radiation-hardened --- triplex-duplex
Choose an application
This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.
total harmonic distortion (THD) --- imperialist competitive algorithm --- fault detection --- automatic current balance --- small signal modeling --- phase-shifted PWM --- voltage balance control --- parasitic switching states --- multi-terminal DC network (MTDC) --- DC-link capacitor voltage balancing --- high efficiency drive --- modular multilevel converters --- DC-link voltage balancing --- power factor correction --- selected harmonic elimination --- Continuous Wavelet Transform --- power flow analysis --- T-type inverter --- electrical drives --- modular multilevel converter (MMC) --- computational cost --- fault location --- voltage imbalance --- DC-link capacitor design --- multilevel active-clamped converter --- dc-link capacitor voltage balance --- voltage ripple --- commutation --- model predictive control (MPC) --- voltage fluctuation --- multi-motor drive --- Balance of capacitor voltage --- on-board battery charger --- single-phase three-level NPC converter --- Suppression of CMV --- redundant switching combination --- ACTPSS --- model predictive control --- three-loop --- finite control set model predictive control --- current estimation --- five-level --- fault-tolerant control --- offset voltage injection --- harmonic component --- current unmeasurable areas --- LC filter --- computational burden --- interleaved buck --- three-level converter --- IGBT short-circuit --- SVPWM --- harmonic --- DC side fault blocking --- three-phase to single-phase cascaded converter --- single shunt resistor --- buck-chopper --- power factor --- modulation techniques --- modular multilevel converters (MMC) --- permanent magnet synchronous generator --- sorting networks --- alternating current (AC) motor drive --- space vector pulse width modulation (SVPWM) --- open end winding motor --- minimum voltage injection (MVI) method --- transmission line --- shift method --- genetic algorithm --- electric vehicle --- active filter --- NPC/H Bridge --- battery energy storage system (BESS) --- digital controller --- neutral-point-clamped (NPC) inverter --- motor drive --- hybrid modulated model predictive control --- level-shifted PWM --- optimal output voltage level --- Phase Disposition PWM --- open-end winding configuration --- modular multilevel converter --- multilevel power converters --- simplified PWM strategy --- MMC-MTDC --- tolerance for battery power unbalance --- three-level neutral point clamped inverter (NPCI) --- real time simulator --- harmonic mitigation --- reverse prediction --- multilevel inverters --- field-programmable gate array --- current reconstruction method --- digital signal processors (DSP) --- three-level boost --- multilevel converter --- improved PQ algorithm --- low-harmonic DC ice-melting device --- PV-simulator --- total harmonic distortion --- voltage balancing --- Sub-module (SM) fault --- DC–DC conversion --- smart grid --- Cascaded H-bridge multilevel inverter (CHBMI) --- dynamic reactive --- field-oriented control --- capacitor voltage balancing --- energy saving --- high reliability applications --- three-phase inverter --- substation’s voltage stability --- three-level boost DC-DC converter --- power quality --- T-type converter --- voltage source inverter --- state-of-charge (SOC) balancing control --- multi-point DC control --- predictive control --- Differential Comparison Low-Voltage Detection Method (DCLVDM)
Listing 1 - 5 of 5 |
Sort by
|