Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of real-world phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems.
complexity --- cuckoo search --- magnetic resonance imaging --- fractional calculus --- musical signal --- pinning synchronization --- Fourier transform --- optimal randomness --- fractional-order system --- Mittag-Leffler function --- meaning --- parameter --- diffusion-wave equation --- anomalous diffusion --- Laplace transform --- time-varying delays --- mass absorption --- swarm-based search --- fractional --- adaptive control --- time series --- Hurst exponent --- fractional derivative --- control --- PID --- global optimization --- reaction–diffusion terms --- audio signal processing --- Caputo derivative --- harmonic impact --- fractional complex networks --- heavy-tailed distribution --- impulses --- long memory --- linear prediction
Choose an application
Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding.
fractional diffusion --- continuous time random walks --- reaction–diffusion equations --- reaction kinetics --- multidimensional scaling --- fractals --- fractional calculus --- financial indices --- entropy --- Dow Jones --- complex systems --- Skellam process --- subordination --- Lévy measure --- Poisson process of order k --- running average --- complexity --- chaos --- logistic differential equation --- liouville-caputo fractional derivative --- local discontinuous Galerkin methods --- stability estimate --- Mittag-Leffler functions --- Wright functions --- fractional relaxation --- diffusion-wave equation --- Laplace and Fourier transform --- fractional Poisson process complex systems --- distributed-order operators --- viscoelasticity --- transport processes --- control theory --- fractional order PID control --- PMSM --- frequency-domain control design --- optimal tuning --- Gaussian watermarks --- statistical assessment --- false positive rate --- semi-fragile watermarking system --- fractional dynamics --- fractional-order thinking --- heavytailedness --- big data --- machine learning --- variability --- diversity --- telegrapher’s equations --- fractional telegrapher’s equation --- continuous time random walk --- transport problems --- fractional conservations laws --- variable fractional model --- turbulent flows --- fractional PINN --- physics-informed learning --- n/a --- reaction-diffusion equations --- Lévy measure --- telegrapher's equations --- fractional telegrapher's equation
Choose an application
Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding.
Research & information: general --- Mathematics & science --- fractional diffusion --- continuous time random walks --- reaction-diffusion equations --- reaction kinetics --- multidimensional scaling --- fractals --- fractional calculus --- financial indices --- entropy --- Dow Jones --- complex systems --- Skellam process --- subordination --- Lévy measure --- Poisson process of order k --- running average --- complexity --- chaos --- logistic differential equation --- liouville-caputo fractional derivative --- local discontinuous Galerkin methods --- stability estimate --- Mittag-Leffler functions --- Wright functions --- fractional relaxation --- diffusion-wave equation --- Laplace and Fourier transform --- fractional Poisson process complex systems --- distributed-order operators --- viscoelasticity --- transport processes --- control theory --- fractional order PID control --- PMSM --- frequency-domain control design --- optimal tuning --- Gaussian watermarks --- statistical assessment --- false positive rate --- semi-fragile watermarking system --- fractional dynamics --- fractional-order thinking --- heavytailedness --- big data --- machine learning --- variability --- diversity --- telegrapher's equations --- fractional telegrapher's equation --- continuous time random walk --- transport problems --- fractional conservations laws --- variable fractional model --- turbulent flows --- fractional PINN --- physics-informed learning --- fractional diffusion --- continuous time random walks --- reaction-diffusion equations --- reaction kinetics --- multidimensional scaling --- fractals --- fractional calculus --- financial indices --- entropy --- Dow Jones --- complex systems --- Skellam process --- subordination --- Lévy measure --- Poisson process of order k --- running average --- complexity --- chaos --- logistic differential equation --- liouville-caputo fractional derivative --- local discontinuous Galerkin methods --- stability estimate --- Mittag-Leffler functions --- Wright functions --- fractional relaxation --- diffusion-wave equation --- Laplace and Fourier transform --- fractional Poisson process complex systems --- distributed-order operators --- viscoelasticity --- transport processes --- control theory --- fractional order PID control --- PMSM --- frequency-domain control design --- optimal tuning --- Gaussian watermarks --- statistical assessment --- false positive rate --- semi-fragile watermarking system --- fractional dynamics --- fractional-order thinking --- heavytailedness --- big data --- machine learning --- variability --- diversity --- telegrapher's equations --- fractional telegrapher's equation --- continuous time random walk --- transport problems --- fractional conservations laws --- variable fractional model --- turbulent flows --- fractional PINN --- physics-informed learning
Choose an application
It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.
Research & information: general --- Mathematics & science --- dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent
Choose an application
It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.
dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent
Choose an application
It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.
Research & information: general --- Mathematics & science --- dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent --- dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent
Listing 1 - 6 of 6 |
Sort by
|