Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
diffusion model --- films --- polymerization --- dioxide --- oxygen reduction --- polymers --- Chemistry --- Chemistry. --- Physical sciences
Choose an application
This book introduces the recent technologies introduced for gases capture including CO2, CO, SO2, H2S, NOx, and H2. Various processes and theories for gas capture and removal are presented. The book provides a useful source of information for engineers and specialists, as well as for undergraduate and postgraduate students in the fields of environmental and chemical science and engineering.
in situ gasification chemical looping combustion --- high-flux circulating fluidized bed --- counter-flow moving bed --- gas leakage --- coupling mechanism --- carbon capture and utilization --- biogas upgrading --- calcium carbonate precipitation --- chemical absorption --- gas pressure --- gas content --- gas basic parameters --- rapid estimation technology --- supercritical water oxidation --- high-pressure separation --- oxygen recovery --- energy recovery --- economic analysis --- coal-direct chemical looping combustion --- theoretical methodology --- high-flux --- pressure gradient --- gas mole fraction --- activity --- UNIFAC --- phase equilibrium --- threshold value --- CO2 capture --- calcium looping --- chemical sorption --- anti-attrition --- pore-former particle size --- Reaction --- kinetics --- carbon dioxide --- N-methyldiethanolamine --- L-Arginine --- stopped flow technique --- carbon capture --- CO2 sequestration --- steel-making waste --- steel slag --- H2S absorption --- amine solutions --- glycols --- desulfurization --- aqueous and non-aqueous solutions --- gas diffusion --- unipore diffusion model --- bidisperse diffusion model --- dispersive diffusion model --- refinery plants --- industrial gas streams --- petrochemical processes --- waste gases --- activated carbons --- catalytic activation --- physicochemical structure --- SO2 adsorption --- optimal conceptual design --- market prediction --- economic uncertainty --- environmental impact --- carbon dioxide separation --- Aspen Plus --- CCGT --- Taguchi --- Minitab --- optimization --- 2-Amino-2-Methyl-1-Propanol --- modelling and Simulation --- post-combustion capture --- exergy analysis --- flowsheeting configurations --- nanofluids --- absorption intensification --- mass transfer coefficient --- bubble column --- global warming --- membrane contactor --- removal of NO2 and CO2 --- coke oven --- carbonaceous deposits --- spectral analysis --- mechanism --- arsenene --- doping --- first principles study --- gas adsorption --- two-dimensional --- waste polyurethane foam --- physical activation --- high selectivity --- ultra-micropore --- mechanical activation --- iron ore --- carbonation --- calcination --- recyclability --- mechanochemical reactions --- carbonation kinetics --- MXene --- gas separation --- Knudsen diffusion --- molecular sieving --- transport mechanism --- spiral nozzle --- gas absorption --- spray atomization --- droplet size --- droplet velocity --- gas emission --- capture --- CO2
Choose an application
This book introduces the recent technologies introduced for gases capture including CO2, CO, SO2, H2S, NOx, and H2. Various processes and theories for gas capture and removal are presented. The book provides a useful source of information for engineers and specialists, as well as for undergraduate and postgraduate students in the fields of environmental and chemical science and engineering.
History of engineering & technology --- in situ gasification chemical looping combustion --- high-flux circulating fluidized bed --- counter-flow moving bed --- gas leakage --- coupling mechanism --- carbon capture and utilization --- biogas upgrading --- calcium carbonate precipitation --- chemical absorption --- gas pressure --- gas content --- gas basic parameters --- rapid estimation technology --- supercritical water oxidation --- high-pressure separation --- oxygen recovery --- energy recovery --- economic analysis --- coal-direct chemical looping combustion --- theoretical methodology --- high-flux --- pressure gradient --- gas mole fraction --- activity --- UNIFAC --- phase equilibrium --- threshold value --- CO2 capture --- calcium looping --- chemical sorption --- anti-attrition --- pore-former particle size --- Reaction --- kinetics --- carbon dioxide --- N-methyldiethanolamine --- L-Arginine --- stopped flow technique --- carbon capture --- CO2 sequestration --- steel-making waste --- steel slag --- H2S absorption --- amine solutions --- glycols --- desulfurization --- aqueous and non-aqueous solutions --- gas diffusion --- unipore diffusion model --- bidisperse diffusion model --- dispersive diffusion model --- refinery plants --- industrial gas streams --- petrochemical processes --- waste gases --- activated carbons --- catalytic activation --- physicochemical structure --- SO2 adsorption --- optimal conceptual design --- market prediction --- economic uncertainty --- environmental impact --- carbon dioxide separation --- Aspen Plus --- CCGT --- Taguchi --- Minitab --- optimization --- 2-Amino-2-Methyl-1-Propanol --- modelling and Simulation --- post-combustion capture --- exergy analysis --- flowsheeting configurations --- nanofluids --- absorption intensification --- mass transfer coefficient --- bubble column --- global warming --- membrane contactor --- removal of NO2 and CO2 --- coke oven --- carbonaceous deposits --- spectral analysis --- mechanism --- arsenene --- doping --- first principles study --- gas adsorption --- two-dimensional --- waste polyurethane foam --- physical activation --- high selectivity --- ultra-micropore --- mechanical activation --- iron ore --- carbonation --- calcination --- recyclability --- mechanochemical reactions --- carbonation kinetics --- MXene --- gas separation --- Knudsen diffusion --- molecular sieving --- transport mechanism --- spiral nozzle --- gas absorption --- spray atomization --- droplet size --- droplet velocity --- gas emission --- capture --- CO2 --- in situ gasification chemical looping combustion --- high-flux circulating fluidized bed --- counter-flow moving bed --- gas leakage --- coupling mechanism --- carbon capture and utilization --- biogas upgrading --- calcium carbonate precipitation --- chemical absorption --- gas pressure --- gas content --- gas basic parameters --- rapid estimation technology --- supercritical water oxidation --- high-pressure separation --- oxygen recovery --- energy recovery --- economic analysis --- coal-direct chemical looping combustion --- theoretical methodology --- high-flux --- pressure gradient --- gas mole fraction --- activity --- UNIFAC --- phase equilibrium --- threshold value --- CO2 capture --- calcium looping --- chemical sorption --- anti-attrition --- pore-former particle size --- Reaction --- kinetics --- carbon dioxide --- N-methyldiethanolamine --- L-Arginine --- stopped flow technique --- carbon capture --- CO2 sequestration --- steel-making waste --- steel slag --- H2S absorption --- amine solutions --- glycols --- desulfurization --- aqueous and non-aqueous solutions --- gas diffusion --- unipore diffusion model --- bidisperse diffusion model --- dispersive diffusion model --- refinery plants --- industrial gas streams --- petrochemical processes --- waste gases --- activated carbons --- catalytic activation --- physicochemical structure --- SO2 adsorption --- optimal conceptual design --- market prediction --- economic uncertainty --- environmental impact --- carbon dioxide separation --- Aspen Plus --- CCGT --- Taguchi --- Minitab --- optimization --- 2-Amino-2-Methyl-1-Propanol --- modelling and Simulation --- post-combustion capture --- exergy analysis --- flowsheeting configurations --- nanofluids --- absorption intensification --- mass transfer coefficient --- bubble column --- global warming --- membrane contactor --- removal of NO2 and CO2 --- coke oven --- carbonaceous deposits --- spectral analysis --- mechanism --- arsenene --- doping --- first principles study --- gas adsorption --- two-dimensional --- waste polyurethane foam --- physical activation --- high selectivity --- ultra-micropore --- mechanical activation --- iron ore --- carbonation --- calcination --- recyclability --- mechanochemical reactions --- carbonation kinetics --- MXene --- gas separation --- Knudsen diffusion --- molecular sieving --- transport mechanism --- spiral nozzle --- gas absorption --- spray atomization --- droplet size --- droplet velocity --- gas emission --- capture --- CO2
Choose an application
This book introduces the recent technologies introduced for gases capture including CO2, CO, SO2, H2S, NOx, and H2. Various processes and theories for gas capture and removal are presented. The book provides a useful source of information for engineers and specialists, as well as for undergraduate and postgraduate students in the fields of environmental and chemical science and engineering.
History of engineering & technology --- in situ gasification chemical looping combustion --- high-flux circulating fluidized bed --- counter-flow moving bed --- gas leakage --- coupling mechanism --- carbon capture and utilization --- biogas upgrading --- calcium carbonate precipitation --- chemical absorption --- gas pressure --- gas content --- gas basic parameters --- rapid estimation technology --- supercritical water oxidation --- high-pressure separation --- oxygen recovery --- energy recovery --- economic analysis --- coal-direct chemical looping combustion --- theoretical methodology --- high-flux --- pressure gradient --- gas mole fraction --- activity --- UNIFAC --- phase equilibrium --- threshold value --- CO2 capture --- calcium looping --- chemical sorption --- anti-attrition --- pore-former particle size --- Reaction --- kinetics --- carbon dioxide --- N-methyldiethanolamine --- L-Arginine --- stopped flow technique --- carbon capture --- CO2 sequestration --- steel-making waste --- steel slag --- H2S absorption --- amine solutions --- glycols --- desulfurization --- aqueous and non-aqueous solutions --- gas diffusion --- unipore diffusion model --- bidisperse diffusion model --- dispersive diffusion model --- refinery plants --- industrial gas streams --- petrochemical processes --- waste gases --- activated carbons --- catalytic activation --- physicochemical structure --- SO2 adsorption --- optimal conceptual design --- market prediction --- economic uncertainty --- environmental impact --- carbon dioxide separation --- Aspen Plus --- CCGT --- Taguchi --- Minitab --- optimization --- 2-Amino-2-Methyl-1-Propanol --- modelling and Simulation --- post-combustion capture --- exergy analysis --- flowsheeting configurations --- nanofluids --- absorption intensification --- mass transfer coefficient --- bubble column --- global warming --- membrane contactor --- removal of NO2 and CO2 --- coke oven --- carbonaceous deposits --- spectral analysis --- mechanism --- arsenene --- doping --- first principles study --- gas adsorption --- two-dimensional --- waste polyurethane foam --- physical activation --- high selectivity --- ultra-micropore --- mechanical activation --- iron ore --- carbonation --- calcination --- recyclability --- mechanochemical reactions --- carbonation kinetics --- MXene --- gas separation --- Knudsen diffusion --- molecular sieving --- transport mechanism --- spiral nozzle --- gas absorption --- spray atomization --- droplet size --- droplet velocity --- gas emission --- capture --- CO2
Choose an application
Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.
integro–differential systems --- Cauchy matrix --- exponential stability --- distributed control --- delay differential equation --- ordinary differential equation --- asymptotic equivalence --- approximation --- eigenvalue --- oscillation --- variable delay --- deviating argument --- non-monotone argument --- slowly varying function --- Crank–Nicolson scheme --- Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- variable coefficients --- stability analysis --- Lane-Emden-Klein-Gordon-Fock system with central symmetry --- Noether symmetries --- conservation laws --- differential equations --- non-monotone delays --- fractional calculus --- stochastic heat equation --- additive noise --- chebyshev polynomials of sixth kind --- error estimate --- fractional difference equations --- delay --- impulses --- existence --- fractional Jaulent-Miodek (JM) system --- fractional logistic function method --- symmetry analysis --- lie point symmetry analysis --- approximate conservation laws --- approximate nonlinear self-adjointness --- perturbed fractional differential equations
Choose an application
With the availability of new and more comprehensive financial market data, making headlines of massive public interest due to recent periods of extreme volatility and crashes, the field of computational finance is evolving ever faster thanks to significant advances made theoretically, and to the massive increase in accessible computational resources. This volume includes a wide variety of theoretical and empirical contributions that address a range of issues and topics related to computational finance. It collects contributions on the use of new and innovative techniques for modeling financial asset returns and volatility, on the use of novel computational methods for pricing, hedging, the risk management of financial instruments, and on the use of new high-dimensional or high-frequency data in multivariate applications in today’s complex world. The papers develop new multivariate models for financial returns and novel techniques for pricing derivatives in such flexible models, examine how pricing and hedging techniques can be used to assess the challenges faced by insurance companies, pension plan participants, and market participants in general, by changing the regulatory requirements. Additionally, they consider the issues related to high-frequency trading and statistical arbitrage in particular, and explore the use of such data to asses risk and volatility in financial markets.
insurance --- Solvency II --- risk-neutral models --- computational finance --- asset pricing models --- overnight price gaps --- financial econometrics --- mean-reversion --- statistical arbitrage --- high-frequency data --- jump-diffusion model --- instantaneous volatility --- directional-change --- seasonality --- forex --- bitcoin --- S& --- P500 --- risk management --- drawdown --- safe assets --- securitisation --- dealer behaviour --- liquidity --- bid–ask spread --- least-squares Monte Carlo --- put-call symmetry --- regression --- simulation --- algorithmic trading --- market quality --- defined contribution plan --- probability of shortfall --- quadratic shortfall --- dynamic asset allocation --- resampled backtests --- stochastic covariance --- 4/2 model --- option pricing --- risk measures --- American options --- exercise boundary --- Monte Carlo --- multiple exercise options --- dynamic programming --- stochastic optimal control --- asset pricing --- calibration --- derivatives --- hedging --- multivariate models --- volatility
Choose an application
Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.
Research & information: general --- Mathematics & science --- integro–differential systems --- Cauchy matrix --- exponential stability --- distributed control --- delay differential equation --- ordinary differential equation --- asymptotic equivalence --- approximation --- eigenvalue --- oscillation --- variable delay --- deviating argument --- non-monotone argument --- slowly varying function --- Crank–Nicolson scheme --- Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- variable coefficients --- stability analysis --- Lane-Emden-Klein-Gordon-Fock system with central symmetry --- Noether symmetries --- conservation laws --- differential equations --- non-monotone delays --- fractional calculus --- stochastic heat equation --- additive noise --- chebyshev polynomials of sixth kind --- error estimate --- fractional difference equations --- delay --- impulses --- existence --- fractional Jaulent-Miodek (JM) system --- fractional logistic function method --- symmetry analysis --- lie point symmetry analysis --- approximate conservation laws --- approximate nonlinear self-adjointness --- perturbed fractional differential equations --- integro–differential systems --- Cauchy matrix --- exponential stability --- distributed control --- delay differential equation --- ordinary differential equation --- asymptotic equivalence --- approximation --- eigenvalue --- oscillation --- variable delay --- deviating argument --- non-monotone argument --- slowly varying function --- Crank–Nicolson scheme --- Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- variable coefficients --- stability analysis --- Lane-Emden-Klein-Gordon-Fock system with central symmetry --- Noether symmetries --- conservation laws --- differential equations --- non-monotone delays --- fractional calculus --- stochastic heat equation --- additive noise --- chebyshev polynomials of sixth kind --- error estimate --- fractional difference equations --- delay --- impulses --- existence --- fractional Jaulent-Miodek (JM) system --- fractional logistic function method --- symmetry analysis --- lie point symmetry analysis --- approximate conservation laws --- approximate nonlinear self-adjointness --- perturbed fractional differential equations
Choose an application
With the availability of new and more comprehensive financial market data, making headlines of massive public interest due to recent periods of extreme volatility and crashes, the field of computational finance is evolving ever faster thanks to significant advances made theoretically, and to the massive increase in accessible computational resources. This volume includes a wide variety of theoretical and empirical contributions that address a range of issues and topics related to computational finance. It collects contributions on the use of new and innovative techniques for modeling financial asset returns and volatility, on the use of novel computational methods for pricing, hedging, the risk management of financial instruments, and on the use of new high-dimensional or high-frequency data in multivariate applications in today’s complex world. The papers develop new multivariate models for financial returns and novel techniques for pricing derivatives in such flexible models, examine how pricing and hedging techniques can be used to assess the challenges faced by insurance companies, pension plan participants, and market participants in general, by changing the regulatory requirements. Additionally, they consider the issues related to high-frequency trading and statistical arbitrage in particular, and explore the use of such data to asses risk and volatility in financial markets.
Economics, finance, business & management --- insurance --- Solvency II --- risk-neutral models --- computational finance --- asset pricing models --- overnight price gaps --- financial econometrics --- mean-reversion --- statistical arbitrage --- high-frequency data --- jump-diffusion model --- instantaneous volatility --- directional-change --- seasonality --- forex --- bitcoin --- S& --- P500 --- risk management --- drawdown --- safe assets --- securitisation --- dealer behaviour --- liquidity --- bid–ask spread --- least-squares Monte Carlo --- put-call symmetry --- regression --- simulation --- algorithmic trading --- market quality --- defined contribution plan --- probability of shortfall --- quadratic shortfall --- dynamic asset allocation --- resampled backtests --- stochastic covariance --- 4/2 model --- option pricing --- risk measures --- American options --- exercise boundary --- Monte Carlo --- multiple exercise options --- dynamic programming --- stochastic optimal control --- asset pricing --- calibration --- derivatives --- hedging --- multivariate models --- volatility --- insurance --- Solvency II --- risk-neutral models --- computational finance --- asset pricing models --- overnight price gaps --- financial econometrics --- mean-reversion --- statistical arbitrage --- high-frequency data --- jump-diffusion model --- instantaneous volatility --- directional-change --- seasonality --- forex --- bitcoin --- S& --- P500 --- risk management --- drawdown --- safe assets --- securitisation --- dealer behaviour --- liquidity --- bid–ask spread --- least-squares Monte Carlo --- put-call symmetry --- regression --- simulation --- algorithmic trading --- market quality --- defined contribution plan --- probability of shortfall --- quadratic shortfall --- dynamic asset allocation --- resampled backtests --- stochastic covariance --- 4/2 model --- option pricing --- risk measures --- American options --- exercise boundary --- Monte Carlo --- multiple exercise options --- dynamic programming --- stochastic optimal control --- asset pricing --- calibration --- derivatives --- hedging --- multivariate models --- volatility
Choose an application
This Special Issue is devoted to some serious problems that the Fractional Calculus (FC) is currently confronted with and aims at providing some answers to the questions like “What are the fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What fractional operators make sense in applications and why?’’, etc. In particular, the “new fractional derivatives and integrals” and the models with these fractional order operators are critically addressed. The Special Issue contains both the surveys and the research contributions. A part of the articles deals with foundations of FC that are considered from the viewpoints of the pure and applied mathematics, and the system theory. Another part of the Special issue addresses the applications of the FC operators and the fractional differential equations. Several articles devoted to the numerical treatment of the FC operators and the fractional differential equations complete the Special Issue.
Research & information: general --- Mathematics & science --- fractional derivatives --- fractional integrals --- fractional calculus --- fractional anti-derivatives --- fractional operators --- integral transforms --- convergent series --- fractional integral --- fractional derivative --- numerical approximation --- translation operator --- distributed lag --- time delay --- scaling --- dilation --- memory --- depreciation --- probability distribution --- fractional models --- fractional differentiation --- distributed time delay systems --- Volterra equation --- adsorption --- fractional differential equations --- numerical methods --- smoothness assumptions --- persistent memory --- initial values --- existence --- uniqueness --- Crank–Nicolson scheme --- weighted Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- stability analysis --- convergence order --- Caputo–Fabrizio operator --- Atangana–Baleanu operator --- fractional falculus --- general fractional derivative --- general fractional integral --- Sonine condition --- fractional relaxation equation --- fractional diffusion equation --- Cauchy problem --- initial-boundary-value problem --- inverse problem --- fractional calculus operators --- special functions --- generalized hypergeometric functions --- integral transforms of special functions --- fractional derivatives --- fractional integrals --- fractional calculus --- fractional anti-derivatives --- fractional operators --- integral transforms --- convergent series --- fractional integral --- fractional derivative --- numerical approximation --- translation operator --- distributed lag --- time delay --- scaling --- dilation --- memory --- depreciation --- probability distribution --- fractional models --- fractional differentiation --- distributed time delay systems --- Volterra equation --- adsorption --- fractional differential equations --- numerical methods --- smoothness assumptions --- persistent memory --- initial values --- existence --- uniqueness --- Crank–Nicolson scheme --- weighted Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- stability analysis --- convergence order --- Caputo–Fabrizio operator --- Atangana–Baleanu operator --- fractional falculus --- general fractional derivative --- general fractional integral --- Sonine condition --- fractional relaxation equation --- fractional diffusion equation --- Cauchy problem --- initial-boundary-value problem --- inverse problem --- fractional calculus operators --- special functions --- generalized hypergeometric functions --- integral transforms of special functions
Choose an application
Algae have been used since ancient times as food for humans, animal feed, agricultural fertilizer, and as a source of substances for therapeutic use. Currently, seaweed represents a vast source of raw materials used in the pharmaceutical, food, traditional medicine, and cosmetics industries. They are nutritionally valuable, both fresh and dried, or as ingredients in a wide variety of pre-made foods. In particular, seaweed contains significant amounts of protein, lipids, minerals, and vitamins. Information is limited on the role of algae and their metabolites in therapy. Only a few taxa have been studied for use in medicine. Many traditional cultures report the healing powers of selected algae in tropical and subtropical marine forms. This is especially true in the maritime areas of Asia, where the sea plays a significant role in daily activities. However, currently, only a few genera and species of algae are involved in aspects of medicine and therapy. The beneficial uses of seaweed or seaweed products include those that can mimic specific manifestations of human disease, production of antibiotic compounds, or improved human nutrition.
alginate --- minerals --- n/a --- edible seaweed --- macro algae --- Mycoplasma pneumoniae --- nutritional value --- seaweeds --- low molecular weight fucoidan --- osteoblast --- huBM-MSC --- ulvan --- HDL-C --- diffusion model --- adjuvant --- phlorotannin --- chlorophylls --- alkaline phosphatase --- raw laver --- heavy metals adsorption --- quantification --- colorectal cancer --- microbial risk --- processing technology --- anticoagulant activity --- isolation --- keratinocytes --- Black Sea --- Osmundea pinnatifida --- marine algae --- feed --- antigen-specific antibody --- bromophenols --- Ulva rigida --- carotenoids --- natural resources --- LDL-C --- functional substance --- agriculture --- particulate matter --- processed laver product --- reactive oxygen species --- health functionality --- cancer stem cells --- cytotoxicity --- HPLC --- omics-based technology --- Sargassum muticum --- TC reduction --- FTIR-ATR --- chemical risk --- enzymatic extracts --- n-3 PUFAs --- mono and polysaccharides --- health --- chemical sulfation --- food --- TC --- NMR --- TG --- carrageenan --- antitumour activity --- NK cell --- Cystoseira barbata --- EPA --- phlorofucofuroeckol A --- Ecklonia cava --- macroalgae/seaweed
Listing 1 - 10 of 21 | << page >> |
Sort by
|