Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Advanced Mechanical Modeling of Nanomaterials and Nanostructures
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint presents a collection of contributions on the application of high-performing computational strategies and enhanced theoretical formulations to solve a wide variety of linear or nonlinear problems in a multiphysical sense, together with different experimental studies.


Book
Advanced Mechanical Modeling of Nanomaterials and Nanostructures
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint presents a collection of contributions on the application of high-performing computational strategies and enhanced theoretical formulations to solve a wide variety of linear or nonlinear problems in a multiphysical sense, together with different experimental studies.

Keywords

Technology: general issues --- History of engineering & technology --- nanotwin --- detwinning --- extreme hardness --- excellent stability --- electrospinning --- nanofibrous membrane --- geometric modeling --- uniaxial tensile --- buckling --- electromagnetic field --- nanobeam --- shifted chebyshev polynomial --- rayleigh-ritz method --- nanocomposites --- FG-CNTRC --- truncated cone --- critical combined loads --- multi-scale mechanics --- finite element analysis --- material testing --- cellulose nanofiber --- polymer composites --- tensile modulus --- cove-edges --- defects --- fracture --- graphene --- molecular dynamics --- strength --- recycling --- circular economy --- nanometric carbon-based ashes --- AJ®P --- non-piezoelectric polymers --- tactile sensors --- robotic gripper --- fluorinated epoxy resin --- fluorinated graphene oxide --- ordered filling --- elastic modulus --- glass transition temperature --- microscopic parameters --- surface bonding --- nanocone arrays --- molecular dynamics simulation --- axially functionally graded materials --- differential quadrature method --- flexural-torsional buckling --- nonlocal elasticity theory --- tapered I-beam --- nanotwin --- detwinning --- extreme hardness --- excellent stability --- electrospinning --- nanofibrous membrane --- geometric modeling --- uniaxial tensile --- buckling --- electromagnetic field --- nanobeam --- shifted chebyshev polynomial --- rayleigh-ritz method --- nanocomposites --- FG-CNTRC --- truncated cone --- critical combined loads --- multi-scale mechanics --- finite element analysis --- material testing --- cellulose nanofiber --- polymer composites --- tensile modulus --- cove-edges --- defects --- fracture --- graphene --- molecular dynamics --- strength --- recycling --- circular economy --- nanometric carbon-based ashes --- AJ®P --- non-piezoelectric polymers --- tactile sensors --- robotic gripper --- fluorinated epoxy resin --- fluorinated graphene oxide --- ordered filling --- elastic modulus --- glass transition temperature --- microscopic parameters --- surface bonding --- nanocone arrays --- molecular dynamics simulation --- axially functionally graded materials --- differential quadrature method --- flexural-torsional buckling --- nonlocal elasticity theory --- tapered I-beam


Book
Advanced Mechanical Modeling of Nanomaterials and Nanostructures
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint presents a collection of contributions on the application of high-performing computational strategies and enhanced theoretical formulations to solve a wide variety of linear or nonlinear problems in a multiphysical sense, together with different experimental studies.


Book
Sonic and Photonic Crystals
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.

Keywords

History of engineering & technology --- optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit --- optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit


Book
Sonic and Photonic Crystals
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.

Keywords

History of engineering & technology --- optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit --- n/a


Book
Sonic and Photonic Crystals
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.

Keywords

optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit --- n/a

Listing 1 - 6 of 6
Sort by