Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This Special Issue is a collection of the latest research articles on various topics related to wind turbine aerodynamics, which includes wind turbine design concepts, tip loss correction study, wind turbine acoustics modelling, and the vertical axis wind turbine concept.
Technology: general issues --- wind turbine aerodynamics --- actuator disc --- AD/NS --- tip loss correction --- blade element momentum --- orthopter --- vertical axis wind turbine --- power coefficient --- torque coefficient --- shear flow --- wind tunnel --- CFD --- delayed detached-eddy simulation --- wind turbine --- tilt angle --- unsteady aerodynamics --- computational fluid dynamics --- wind tunnel experiment --- wind turbine airfoil --- turbulence --- Gurney flap --- aerodynamic characteristics --- aeroacoustics --- noise modelling --- noise control --- coned rotor --- aerodynamics --- n/a
Choose an application
This Special Issue is a collection of the latest research articles on various topics related to wind turbine aerodynamics, which includes wind turbine design concepts, tip loss correction study, wind turbine acoustics modelling, and the vertical axis wind turbine concept.
wind turbine aerodynamics --- actuator disc --- AD/NS --- tip loss correction --- blade element momentum --- orthopter --- vertical axis wind turbine --- power coefficient --- torque coefficient --- shear flow --- wind tunnel --- CFD --- delayed detached-eddy simulation --- wind turbine --- tilt angle --- unsteady aerodynamics --- computational fluid dynamics --- wind tunnel experiment --- wind turbine airfoil --- turbulence --- Gurney flap --- aerodynamic characteristics --- aeroacoustics --- noise modelling --- noise control --- coned rotor --- aerodynamics --- n/a
Choose an application
This Special Issue is a collection of the latest research articles on various topics related to wind turbine aerodynamics, which includes wind turbine design concepts, tip loss correction study, wind turbine acoustics modelling, and the vertical axis wind turbine concept.
Technology: general issues --- wind turbine aerodynamics --- actuator disc --- AD/NS --- tip loss correction --- blade element momentum --- orthopter --- vertical axis wind turbine --- power coefficient --- torque coefficient --- shear flow --- wind tunnel --- CFD --- delayed detached-eddy simulation --- wind turbine --- tilt angle --- unsteady aerodynamics --- computational fluid dynamics --- wind tunnel experiment --- wind turbine airfoil --- turbulence --- Gurney flap --- aerodynamic characteristics --- aeroacoustics --- noise modelling --- noise control --- coned rotor --- aerodynamics --- wind turbine aerodynamics --- actuator disc --- AD/NS --- tip loss correction --- blade element momentum --- orthopter --- vertical axis wind turbine --- power coefficient --- torque coefficient --- shear flow --- wind tunnel --- CFD --- delayed detached-eddy simulation --- wind turbine --- tilt angle --- unsteady aerodynamics --- computational fluid dynamics --- wind tunnel experiment --- wind turbine airfoil --- turbulence --- Gurney flap --- aerodynamic characteristics --- aeroacoustics --- noise modelling --- noise control --- coned rotor --- aerodynamics
Choose an application
This Special Issue “Atmospheric Conditions for Wind Energy Applications” hosts papers on aspects of remote sensing for atmospheric conditions for wind energy applications. Wind lidar technology is presented from a theoretical view on the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind turbine control, wind farm wake, and gust characterizations is presented, as well as methods to reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting are presented. For the offshore environment, floating lidar data processing is presented as well as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data are presented..
complex flow --- Floating Lidar System (FLS) --- mesoscale --- wind energy resources --- variational analysis --- wind turbine --- wind sensing --- wind energy --- wind gusts --- wake --- wind structure --- complex terrain --- global ocean --- remote sensing forecasting --- detached eddy simulation --- five-minute ahead wind power forecasting --- tropical cyclones --- fetch effect --- aerosol --- vertical Light Detection and Ranging --- range gate length --- resource assessment --- field experiments --- remote sensing --- optical flow --- turbulence --- atmospheric boundary layer --- Doppler Wind Lidar --- offshore --- empirical equation --- Lidar --- WindSAT --- coastal wind measurement --- offshore wind speed forecasting --- Doppler wind lidar --- Doppler --- wind --- wind lidar --- cross-correlation --- QuikSCAT --- wind resource assessment --- detecting and tracking --- single-particle --- gust prediction --- NWP model --- velocity-azimuth-display algorithm --- lidar-assisted control (LAC) --- Doppler lidar --- motion estimation --- power performance testing --- lidar --- large-eddy simulations --- wind farm --- coherent Doppler lidar --- wake modeling --- probabilistic forecasting --- control --- NeoWins --- wind turbine controls --- impact prediction --- wind turbine wake --- Hazaki Oceanographical Research Station --- VAD --- virtual lidar --- Doppler radar --- IEA Wind Task 32 --- ASCAT --- wind atlas --- turbulence intensity
Choose an application
Fluid flow and heat transfer processes play an important role in many areas of science and engineering, from the planetary scale (e.g., influencing weather and climate) to the microscopic scales of enhancing heat transfer by the use of nanofluids; understood in the broadest possible sense, they also underpin the performance of many energy systems. This topical Special Issue of Energies is dedicated to the recent advances in this very broad field. This book will be of interest to readers not only in the fields of mechanical, aerospace, chemical, process and petroleum, energy, earth, civil ,and flow instrumentation engineering but, equally, biological and medical sciences, as well as physics and mathematics; that is, anywhere that “fluid flow and heat transfer” phenomena may play an important role or be a subject of worthy research pursuits.
n/a --- thermal performance --- microbubble pump --- particle deposition --- flow oscillation --- orthogonal jet --- flat plate --- gas turbine engine --- air heater --- flow behavior --- transonic compressor --- friction factor --- nonlinear thermal radiation --- oscillators --- porous cavity --- POD --- turbulent flow --- thermosyphon --- turbulence --- mass transfer --- tip leakage flow --- capture efficiency --- pipe flow --- correlation --- decomposition dimensionalities --- heat transfer --- pressure loss --- CANDU-6 --- numerical modeling --- CFD --- magnetic field --- boundary layer --- two-phase flow --- heat transfer performance --- Colebrook-White --- computational burden --- phase change --- surrogate model --- Padé polynomials --- traveling-wave heat engine --- flow regime --- numerical simulation --- energetics --- ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid --- pumps --- BEM --- SPIV --- acoustic streaming --- microbubbles --- Aspen® --- push-pull --- Positive Temperature Coefficient (PTC) elements --- iterative procedure --- transient analysis --- spiral fin-tube --- toxic gases --- unsteady heat release rate --- water hammer --- method of moment --- visualization --- superheated steam --- impingement heat transfer enhancement --- X-ray microtomography --- moderator --- wind turbine --- flow rate --- fin-tube --- flue gas --- actuator disc --- temperature distributions --- supercritical LNG --- sharp sections --- moment of inertia --- Colebrook equation --- pump efficiency --- tower --- OpenFOAM --- computational fluid dynamics --- chemical reaction --- pump performance --- logarithms --- numerical results --- downwind --- thermodynamic --- triaxial stress --- flow friction --- energy conversion --- entropy generation --- zigzag type --- inertance-compliance --- section aspect ratios --- laminar separation bubble --- axial piston pumps --- thermogravimetry --- pressure drop --- load resistances --- vortex breakdown --- T-section prism --- flow-induced motion --- centrifugal pump --- load --- vortex identification --- decomposition region --- condensation --- performance characteristics --- pipes --- detached-eddy simulation --- Computational Fluid Dynamics (CFD) simulation --- thermal cracking --- real vehicle experiments --- bubble size --- thermal energy recovery --- hydraulic resistances --- concentration --- tower shadow --- fire-spreading characteristics --- thermoacoustic electricity generator --- bubble generation --- multi-stage --- thermal effect --- ferrofluid --- PHWR --- fluidics --- multiphase flow --- printed circuit heat exchanger --- particle counter --- dew point temperature --- Padé polynomials
Listing 1 - 5 of 5 |
Sort by
|