Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Global concern about climate change caused by the exploitation of fossil fuels is encouraging the use of renewable energies. For instance, the European Union aims to be climate neutral by 2050. Biogas is an interesting renewable energy source due to its high calorific value. Today, biogas is mainly used for the production of electricity and heat by a combined heat and power engine. However, before its valorization, biogas needs to be desulfurized (H2S removal) to avoid corrosion and sulfur oxides emissions during its combustion. Biogas can be upgraded (CO2 removal) and used as vehicle fuel or injected into the natural gas grid. In the last 15 years, significant advances have occurred in the development of biological desulfurization processes. In this book with five chapters, the reader can find some of the latest advances in the biogas desulfurization and an overview of the state-of-the-art research. Three of them are research studies and two are reviews concerning the current state of biogas desulfurization technologies, economic analysis of alternatives, and the microbial ecology in biofiltration units. Biogas desulfurization is considered to be essential by many stakeholders (biogas producers, suppliers of biogas upgrading devices, gas traders, researchers, etc.) all around the world.
biotrickling filters --- in-situ biogas desulphurisation --- response surface methodology --- microbial ecology --- anoxic biotrickling filter --- desulfurization --- molecular techniques --- open-pore polyurethane foam --- anaerobic digestion --- autotrophic denitrification --- anoxic biofiltration --- Teflon --- biotrickling filter --- biogas --- desulphurisation --- H2S --- post-biogas desulphurisation --- hydrogen sulfide elimination --- removal process --- Ottengraf’s model --- packing material --- hydrogen sulfide --- open polyurethane foam --- sulfur-oxidizing bacteria --- anoxic --- PVC --- biofiltration --- PET
Choose an application
With the announcement of the European Green Deal, which defines a set of policy initiatives aimed at achieving a 50–55% reduction in carbon emissions by 2030 and making Europe climate neutral in 2050, the challenge of energy transition becomes even more critical. The transformation of national energy systems towards sustainability is progressing throughout all Central and Eastern European (CEE) countries, yet the goals and results are different. Most EU Member States have made substantial progress towards meeting their long-term commitments of emissions reductions. However, some bloc members have struggled to meet their obligations. An effective energy transition requires the introduction of appropriately designed policy instruments and of robust economic analyses that ensure the best possible outcomes at the lowest costs for society. In this context, this Special Issue aims to bring into the discussion the challenges that CEE countries have to face and overcome while undergoing energy transition.
Technology: general issues --- History of engineering & technology --- climate change --- food security --- grand challenges --- multiple factor analysis --- regional studies --- renewable energy --- sustainable development goals --- support systems --- energy policy --- cogeneration --- capacity market --- individual cogeneration premium --- trade globalization --- financial globalization --- CO2 emissions --- real GDP per capita --- bootstrap panel Granger causality --- EU transition economies --- photovoltaics --- renewable energy sources --- “My Electricity” --- renewable energy policy --- Poland --- “Mój Prąd” --- grant --- renewable energy grants --- renewable energy support --- economic appraisal --- social discount rate --- Ramsey formula --- consumption rate of interest --- social opportunity cost --- renewable energy sources (RES) --- green energy transformation --- sustainable development --- energy cooperatives --- coopetition --- Renewable Energy Communities --- management --- households --- energy consumption --- platform --- EU ETS --- CO2 --- emissions trading --- energy companies from Central and Eastern Europe --- decarbonisation --- energy transition --- low-carbon technology --- climate and energy policy --- indicators --- biomass --- electric vehicle --- electromobility --- energy balance --- efficiency engines --- clustering --- charging stations --- data analysis --- hydrogen cells --- energy law --- customer preferences --- electric car --- PHEV --- driving technique --- limestone sorbents --- flue gas desulphurisation --- FGD gypsum --- coal-fired power plants --- climate policy --- capacity adequacy --- linear programming --- COVID-19 pandemic --- lockdown --- electricity demand profiles --- Polish energy mix --- energy transition in Poland --- social acceptance --- carbon emissions --- fleet electrification --- sustainable mobility --- fleet management --- energy mix --- onshore wind --- risk assessment --- cash-flows --- discount rate --- cost of capital --- cost of equity --- district heating --- decarbonization --- energy efficiency --- Hubgrade --- remuneration mechanism --- power generation --- new investments --- combined heat and power --- optimization --- thermal energy storage --- uncertainty --- climate change --- food security --- grand challenges --- multiple factor analysis --- regional studies --- renewable energy --- sustainable development goals --- support systems --- energy policy --- cogeneration --- capacity market --- individual cogeneration premium --- trade globalization --- financial globalization --- CO2 emissions --- real GDP per capita --- bootstrap panel Granger causality --- EU transition economies --- photovoltaics --- renewable energy sources --- “My Electricity” --- renewable energy policy --- Poland --- “Mój Prąd” --- grant --- renewable energy grants --- renewable energy support --- economic appraisal --- social discount rate --- Ramsey formula --- consumption rate of interest --- social opportunity cost --- renewable energy sources (RES) --- green energy transformation --- sustainable development --- energy cooperatives --- coopetition --- Renewable Energy Communities --- management --- households --- energy consumption --- platform --- EU ETS --- CO2 --- emissions trading --- energy companies from Central and Eastern Europe --- decarbonisation --- energy transition --- low-carbon technology --- climate and energy policy --- indicators --- biomass --- electric vehicle --- electromobility --- energy balance --- efficiency engines --- clustering --- charging stations --- data analysis --- hydrogen cells --- energy law --- customer preferences --- electric car --- PHEV --- driving technique --- limestone sorbents --- flue gas desulphurisation --- FGD gypsum --- coal-fired power plants --- climate policy --- capacity adequacy --- linear programming --- COVID-19 pandemic --- lockdown --- electricity demand profiles --- Polish energy mix --- energy transition in Poland --- social acceptance --- carbon emissions --- fleet electrification --- sustainable mobility --- fleet management --- energy mix --- onshore wind --- risk assessment --- cash-flows --- discount rate --- cost of capital --- cost of equity --- district heating --- decarbonization --- energy efficiency --- Hubgrade --- remuneration mechanism --- power generation --- new investments --- combined heat and power --- optimization --- thermal energy storage --- uncertainty
Choose an application
With the announcement of the European Green Deal, which defines a set of policy initiatives aimed at achieving a 50–55% reduction in carbon emissions by 2030 and making Europe climate neutral in 2050, the challenge of energy transition becomes even more critical. The transformation of national energy systems towards sustainability is progressing throughout all Central and Eastern European (CEE) countries, yet the goals and results are different. Most EU Member States have made substantial progress towards meeting their long-term commitments of emissions reductions. However, some bloc members have struggled to meet their obligations. An effective energy transition requires the introduction of appropriately designed policy instruments and of robust economic analyses that ensure the best possible outcomes at the lowest costs for society. In this context, this Special Issue aims to bring into the discussion the challenges that CEE countries have to face and overcome while undergoing energy transition.
Technology: general issues --- History of engineering & technology --- climate change --- food security --- grand challenges --- multiple factor analysis --- regional studies --- renewable energy --- sustainable development goals --- support systems --- energy policy --- cogeneration --- capacity market --- individual cogeneration premium --- trade globalization --- financial globalization --- CO2 emissions --- real GDP per capita --- bootstrap panel Granger causality --- EU transition economies --- photovoltaics --- renewable energy sources --- “My Electricity” --- renewable energy policy --- Poland --- “Mój Prąd” --- grant --- renewable energy grants --- renewable energy support --- economic appraisal --- social discount rate --- Ramsey formula --- consumption rate of interest --- social opportunity cost --- renewable energy sources (RES) --- green energy transformation --- sustainable development --- energy cooperatives --- coopetition --- Renewable Energy Communities --- management --- households --- energy consumption --- platform --- EU ETS --- CO2 --- emissions trading --- energy companies from Central and Eastern Europe --- decarbonisation --- energy transition --- low-carbon technology --- climate and energy policy --- indicators --- biomass --- electric vehicle --- electromobility --- energy balance --- efficiency engines --- clustering --- charging stations --- data analysis --- hydrogen cells --- energy law --- customer preferences --- electric car --- PHEV --- driving technique --- limestone sorbents --- flue gas desulphurisation --- FGD gypsum --- coal-fired power plants --- climate policy --- capacity adequacy --- linear programming --- COVID-19 pandemic --- lockdown --- electricity demand profiles --- Polish energy mix --- energy transition in Poland --- social acceptance --- carbon emissions --- fleet electrification --- sustainable mobility --- fleet management --- energy mix --- onshore wind --- risk assessment --- cash-flows --- discount rate --- cost of capital --- cost of equity --- district heating --- decarbonization --- energy efficiency --- Hubgrade --- remuneration mechanism --- power generation --- new investments --- combined heat and power --- optimization --- thermal energy storage --- uncertainty
Choose an application
With the announcement of the European Green Deal, which defines a set of policy initiatives aimed at achieving a 50–55% reduction in carbon emissions by 2030 and making Europe climate neutral in 2050, the challenge of energy transition becomes even more critical. The transformation of national energy systems towards sustainability is progressing throughout all Central and Eastern European (CEE) countries, yet the goals and results are different. Most EU Member States have made substantial progress towards meeting their long-term commitments of emissions reductions. However, some bloc members have struggled to meet their obligations. An effective energy transition requires the introduction of appropriately designed policy instruments and of robust economic analyses that ensure the best possible outcomes at the lowest costs for society. In this context, this Special Issue aims to bring into the discussion the challenges that CEE countries have to face and overcome while undergoing energy transition.
climate change --- food security --- grand challenges --- multiple factor analysis --- regional studies --- renewable energy --- sustainable development goals --- support systems --- energy policy --- cogeneration --- capacity market --- individual cogeneration premium --- trade globalization --- financial globalization --- CO2 emissions --- real GDP per capita --- bootstrap panel Granger causality --- EU transition economies --- photovoltaics --- renewable energy sources --- “My Electricity” --- renewable energy policy --- Poland --- “Mój Prąd” --- grant --- renewable energy grants --- renewable energy support --- economic appraisal --- social discount rate --- Ramsey formula --- consumption rate of interest --- social opportunity cost --- renewable energy sources (RES) --- green energy transformation --- sustainable development --- energy cooperatives --- coopetition --- Renewable Energy Communities --- management --- households --- energy consumption --- platform --- EU ETS --- CO2 --- emissions trading --- energy companies from Central and Eastern Europe --- decarbonisation --- energy transition --- low-carbon technology --- climate and energy policy --- indicators --- biomass --- electric vehicle --- electromobility --- energy balance --- efficiency engines --- clustering --- charging stations --- data analysis --- hydrogen cells --- energy law --- customer preferences --- electric car --- PHEV --- driving technique --- limestone sorbents --- flue gas desulphurisation --- FGD gypsum --- coal-fired power plants --- climate policy --- capacity adequacy --- linear programming --- COVID-19 pandemic --- lockdown --- electricity demand profiles --- Polish energy mix --- energy transition in Poland --- social acceptance --- carbon emissions --- fleet electrification --- sustainable mobility --- fleet management --- energy mix --- onshore wind --- risk assessment --- cash-flows --- discount rate --- cost of capital --- cost of equity --- district heating --- decarbonization --- energy efficiency --- Hubgrade --- remuneration mechanism --- power generation --- new investments --- combined heat and power --- optimization --- thermal energy storage --- uncertainty
Listing 1 - 4 of 4 |
Sort by
|