Listing 1 - 10 of 27 | << page >> |
Sort by
|
Choose an application
Distribution (Probability theory) --- Distribution (Théorie des probabilités) --- 311 --- Histography --- Density estimation --- Histography. --- Density estimation. --- Distribution (Théorie des probabilités) --- Statistique
Choose an application
This thesis is concerned with intention recognition for a humanoid robot and investigates how the challenges of uncertain and incomplete observations, a high degree of detail of the used models, and real-time inference may be addressed by modeling the human rationale as hybrid, dynamic Bayesian networks and performing inference with these models. The key focus lies on the automatic identification of the employed nonlinear stochastic dependencies and the situation-specific inference.
Intention Recognition --- Dynamic Systems --- (Conditional) Density Estimation --- Regularization --- Human-Robot-Cooperation
Choose an application
Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries.
Technology: general issues --- History of engineering & technology --- fault detection --- deep learning --- transfer learning --- anomaly detection --- bearing --- wind turbines --- misalignment --- fault diagnosis --- information fusion --- improved artificial bee colony algorithm --- LSSVM --- D–S evidence theory --- optimal bandwidth --- kernel density estimation --- JS divergence --- domain adaptation --- partial transfer --- subdomain --- rotating machinery --- gearbox --- signal interception --- peak extraction --- cubic spline interpolation envelope --- combined fault diagnosis --- empirical wavelet transform --- grey wolf optimizer --- low pass FIR filter --- support vector machine --- satellite momentum wheel --- Huffman-multi-scale entropy (HMSE) --- support vector machine (SVM) --- adaptive particle swarm optimization (APSO) --- rail surface defect detection --- machine vision --- YOLOv4 --- MobileNetV3 --- multi-source heterogeneous fusion --- n/a --- D-S evidence theory
Choose an application
Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries.
fault detection --- deep learning --- transfer learning --- anomaly detection --- bearing --- wind turbines --- misalignment --- fault diagnosis --- information fusion --- improved artificial bee colony algorithm --- LSSVM --- D–S evidence theory --- optimal bandwidth --- kernel density estimation --- JS divergence --- domain adaptation --- partial transfer --- subdomain --- rotating machinery --- gearbox --- signal interception --- peak extraction --- cubic spline interpolation envelope --- combined fault diagnosis --- empirical wavelet transform --- grey wolf optimizer --- low pass FIR filter --- support vector machine --- satellite momentum wheel --- Huffman-multi-scale entropy (HMSE) --- support vector machine (SVM) --- adaptive particle swarm optimization (APSO) --- rail surface defect detection --- machine vision --- YOLOv4 --- MobileNetV3 --- multi-source heterogeneous fusion --- n/a --- D-S evidence theory
Choose an application
Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries.
Technology: general issues --- History of engineering & technology --- fault detection --- deep learning --- transfer learning --- anomaly detection --- bearing --- wind turbines --- misalignment --- fault diagnosis --- information fusion --- improved artificial bee colony algorithm --- LSSVM --- D-S evidence theory --- optimal bandwidth --- kernel density estimation --- JS divergence --- domain adaptation --- partial transfer --- subdomain --- rotating machinery --- gearbox --- signal interception --- peak extraction --- cubic spline interpolation envelope --- combined fault diagnosis --- empirical wavelet transform --- grey wolf optimizer --- low pass FIR filter --- support vector machine --- satellite momentum wheel --- Huffman-multi-scale entropy (HMSE) --- support vector machine (SVM) --- adaptive particle swarm optimization (APSO) --- rail surface defect detection --- machine vision --- YOLOv4 --- MobileNetV3 --- multi-source heterogeneous fusion
Choose an application
Studying and managing regional economic development in the current globalization era demands prompt, reliable, and comparable estimates for a region’s economic performance. Night-time lights (NTL) emitted from residential areas, entertainment places, industrial facilities, etc., and captured by satellites have become an increasingly recognized proxy for on-ground human activities. Compared to traditional indicators supplied by statistical offices, NTLs may have several advantages. First, NTL data are available all over the world, providing researchers and official bodies with the opportunity to obtain estimates even for regions with extremely poor reporting practices. Second, in contrast to non-standardized traditional reporting procedures, the unified NTL data remove the problem of inter-regional comparability. Finally, NTL data are currently globally available on a daily basis, which makes it possible to obtain these estimates promptly. In this book, we provide the reader with the contributions demonstrating the potential and efficiency of using NTL data as a proxy for the performance of regions.
Research & information: general --- population reorganization --- population density --- spatiotemporal patterns --- DMSP-OLS --- NPP-VIIRS --- Chongqing --- education inequality --- nighttime light --- urbanization --- sustainable development --- human development --- urban hotspot delineation --- Zipf's law --- intra-urban scaling --- street nodes --- VIIRS imagery --- kernel density estimation --- Luojia 1-01 satellite --- spatial resolution --- searching radius threshold --- urban built-up area --- attention-augmented CNN --- nightlight --- fine-grained GDP estimation --- daytime satellite imagery --- arbitrary area representation --- Luojia 1-01 --- MNUACI --- urban area --- urban remote sensing --- VIIRS --- DMSP --- GDP --- nighttime lights --- cross-sectional --- time-series --- economic statistics --- functional urban areas (FUAs) --- boundaries --- multiple regression modelling --- artificial light-at-night (ALAN) --- optimal threshold --- shadow economy --- Iran --- sanctions --- JCPOA --- economic inequality --- nighttime light emissions --- spatial measurement
Choose an application
With the advent of disruptive digital technologies, companies are facing unprecedented challenges and opportunities. Advanced manufacturing systems are of paramount importance in making key enabling technologies and new products more competitive, affordable, and accessible, as well as for fostering their economic and social impact. The manufacturing industry also serves as an innovator for sustainability since automation coupled with advanced manufacturing technologies have helped manufacturing practices transition into the circular economy. To that end, this Special Issue of the journal Applied Sciences, devoted to the broad field of Smart Sustainable Manufacturing Systems, explores recent research into the concepts, methods, tools, and applications for smart sustainable manufacturing, in order to advance and promote the development of modern and intelligent manufacturing systems. In light of the above, this Special Issue is a collection of the latest research on relevant topics and addresses the current challenging issues associated with the introduction of smart sustainable manufacturing systems. Various topics have been addressed in this Special Issue, which focuses on the design of sustainable production systems and factories; industrial big data analytics and cyberphysical systems; intelligent maintenance approaches and technologies for increased operating life of production systems; zero-defect manufacturing strategies, tools and methods towards online production management; and connected smart factories.
n/a --- sensitivity analysis --- customized demand --- dynamic supply chain design --- additive manufacturing --- sensor function --- deteriorating systems --- big data --- connected smart factories --- operations management --- kernel density estimation --- development --- efficiency --- hybrid laminate --- managerial commitment --- productivity benefits --- particle map --- pace --- car-sharing --- particle defect management --- case study --- quality --- semiconductor manufacturing process --- open innovation --- circular economy --- remanufacturing --- sustainability evaluation --- multi-usable cloud service platform --- knowledge-based engineering --- sustainable manufacturing --- Dempster–Shafer evidence theory --- Transport Sustainability Index --- Industry 4.0 --- knowledge management --- collective intelligence --- analytic hierarchy process --- TPM --- flexibility --- manufacturing process innovation --- data collection and analytics --- smart factory --- intelligent machining --- computer-aided innovation --- implementation --- improvement --- piezoceramic compound --- sheet metal forming --- production planning --- impact detection --- maintenance --- Dempster-Shafer evidence theory
Choose an application
The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section “Mathematics and Computer Science”. Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties.
Information technology industries --- mathematical competency --- assessment --- machine learning --- classification and regression tree --- CART ensembles and bagging --- ensemble model --- multivariate adaptive regression splines --- cross-validation --- dam inflow prediction --- long short-term memory --- wavelet transform --- input predictor selection --- hyper-parameter optimization --- brain-computer interface --- EEG motor imagery --- CNN-LSTM architectures --- real-time motion imagery recognition --- artificial neural networks --- banking --- hedonic prices --- housing --- quantile regression --- data quality --- citizen science --- consensus models --- clustering --- Gower’s interpolation formula --- Gower’s metric --- mixed data --- multidimensional scaling --- classification --- data-adaptive kernel functions --- image data --- multi-category classifier --- predictive models --- support vector machine --- stochastic gradient descent --- damped Newton --- convexity --- METABRIC dataset --- breast cancer subtyping --- deep forest --- multi-omics data --- categorical data --- similarity --- feature selection --- kernel density estimation --- non-linear optimization --- kernel clustering --- n/a --- Gower's interpolation formula --- Gower's metric
Choose an application
The analysis and modeling of time series is of the utmost importance in various fields of application. This Special Issue is a collection of articles on a wide range of topics, covering stochastic models for time series as well as methods for their analysis, univariate and multivariate time series, real-valued and discrete-valued time series, applications of time series methods to forecasting and statistical process control, and software implementations of methods and models for time series. The proposed approaches and concepts are thoroughly discussed and illustrated with several real-world data examples.
Humanities --- time series --- anomaly detection --- unsupervised learning --- kernel density estimation --- missing data --- multivariate time series --- nonstationary --- spectral matrix --- local field potential --- electric power --- forecasting accuracy --- machine learning --- extended binomial distribution --- INAR --- thinning operator --- time series of counts --- unemployment rate --- SARIMA --- SETAR --- Holt–Winters --- ETS --- neural network autoregression --- Romania --- integer-valued time series --- bivariate Poisson INGARCH model --- outliers --- robust estimation --- minimum density power divergence estimator --- CUSUM control chart --- INAR-type time series --- statistical process monitoring --- random survival rate --- zero-inflation --- cointegration --- subspace algorithms --- VARMA models --- seasonality --- finance --- volatility fluctuation --- Student’s t-process --- entropy based particle filter --- relative entropy --- count data --- time series analysis --- Julia programming language --- ordinal patterns --- long-range dependence --- multivariate data analysis --- limit theorems --- integer-valued moving average model --- counting series --- dispersion test --- Bell distribution --- count time series --- estimation --- overdispersion --- multivariate count data --- INGACRCH --- state-space model --- bank failures --- transactions --- periodic autoregression --- integer-valued threshold models --- parameter estimation --- models
Choose an application
Studying and managing regional economic development in the current globalization era demands prompt, reliable, and comparable estimates for a region’s economic performance. Night-time lights (NTL) emitted from residential areas, entertainment places, industrial facilities, etc., and captured by satellites have become an increasingly recognized proxy for on-ground human activities. Compared to traditional indicators supplied by statistical offices, NTLs may have several advantages. First, NTL data are available all over the world, providing researchers and official bodies with the opportunity to obtain estimates even for regions with extremely poor reporting practices. Second, in contrast to non-standardized traditional reporting procedures, the unified NTL data remove the problem of inter-regional comparability. Finally, NTL data are currently globally available on a daily basis, which makes it possible to obtain these estimates promptly. In this book, we provide the reader with the contributions demonstrating the potential and efficiency of using NTL data as a proxy for the performance of regions.
Research & information: general --- population reorganization --- population density --- spatiotemporal patterns --- DMSP-OLS --- NPP-VIIRS --- Chongqing --- education inequality --- nighttime light --- urbanization --- sustainable development --- human development --- urban hotspot delineation --- Zipf’s law --- intra-urban scaling --- street nodes --- VIIRS imagery --- kernel density estimation --- Luojia 1-01 satellite --- spatial resolution --- searching radius threshold --- urban built-up area --- attention-augmented CNN --- nightlight --- fine-grained GDP estimation --- daytime satellite imagery --- arbitrary area representation --- Luojia 1-01 --- MNUACI --- urban area --- urban remote sensing --- VIIRS --- DMSP --- GDP --- nighttime lights --- cross-sectional --- time-series --- economic statistics --- n/a --- functional urban areas (FUAs) --- boundaries --- multiple regression modelling --- artificial light-at-night (ALAN) --- optimal threshold --- shadow economy --- Iran --- sanctions --- JCPOA --- economic inequality --- nighttime light emissions --- spatial measurement --- Zipf's law
Listing 1 - 10 of 27 | << page >> |
Sort by
|