Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Rearing mice from birth in an enriched environment leads to a conspicuous acceleration of visual system development appreciable at behavioral, electrophysiological and molecular level. Little is known about the possible mechanisms of action through which enriched environment affects visual system development. It has been suggested that differences in maternal behavior between enriched and non-enriched conditions could contribute to the earliest effects of enriched environment on visual development and that neurotrophins, BDNF in particular, might be involved. Here, we examined Brain Derived Neurotrophic Factor (BDNF) levels in the visual cortex during development and showed that an increase occurs in the first week of life in enriched pups compared to standard reared pups; BDNF levels at birth were equal in the two groups. This suggests a postnatal rather than a prenatal effect of environment on BDNF. A detailed analysis of maternal care behavior showed that pups raised in a Condition of social and physical enrichment experienced higher levels of licking behavior and physical contact compared to standard reared pups and that enhanced levels of licking were also provided to pups in an enriched environment where no adult females other than the mother were present. Thus, different levels of maternal care in different environmental conditions could act as indirect mediator for the earliest effects of enrichment on Visual system development. Some of the effects of different levels of maternal care on the offspring behavior are long lasting. We measured the visual acuity of differentially reared mice at the end of the period Of Visual acuity development (postnatal day 45) and at 12 months of age, using a behavioral discrimination task. We found better learning abilities and higher visual acuity in enriched compared to standard reared mice at both ages. (C) 2004 Elsevier Ltd. All rights reserved
Ability. --- Adult cortex. --- Adult. --- Age. --- Analysis. --- Bdnf. --- Behavior. --- Birth. --- Brain. --- Care. --- Contact. --- Cortex. --- Critical period. --- Dendritic growth. --- Development. --- Discrimination. --- Enriched environment. --- Enriched. --- Enrichment. --- Environment. --- Environmental enrichment. --- Female. --- Females. --- Group. --- Growth-factor-i. --- Increase. --- Learning ability. --- Learning-ability. --- Learning. --- Level. --- Licking behavior. --- Life. --- Long-term potentiation. --- Maternal behavior. --- Maternal care. --- Maternal touch. --- Maternal-behavior. --- Maternal-care. --- Maternal. --- Mechanisms. --- Mice. --- Mother. --- Neurotrophic factor. --- Physical. --- Plasticity. --- Prenatal. --- Pups. --- Rat-brain. --- Rearing. --- Social. --- Spatial memory. --- Synaptic-transmission. --- System. --- Task. --- Time. --- Visual acuity. --- Visual system development. --- Visual-cortex.
Choose an application
The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the n
Developmental neurobiology. --- Nervous system --- Neurological errors. --- Errors in neurological diagnosis or treatment --- Neurologic errors --- Medical errors --- Neurology --- Medical neurology --- Nerves --- Neurologic disorders --- Neurological disorders --- Neuropathology --- Developmental neurology --- Neurogenesis --- Developmental biology --- Embryology --- Neurobiology --- Neuroplasticity --- Diseases. --- Diseases --- Treatment. --- Evolution --- Nervous System --- Neurogenesis. --- Nervous System Malformations. --- embryology --- Brain --- Neural circuitry. --- Réseaux nerveux --- Neurologie du développement --- Cerveau --- Growth. --- Maladies --- Croissance --- Neurogenetics. --- Neurogénétique --- Système nerveux --- Traitement --- Neurons --- Axons --- Dendrites --- Cellular signal transduction --- Physiology. --- Medicine --- Human Anatomy & Physiology --- Health & Biological Sciences --- Neuroscience --- Cellular information transduction --- Information transduction, Cellular --- Signal transduction, Cellular --- Bioenergetics --- Cellular control mechanisms --- Information theory in biology --- Nerve axons --- Cell physiology --- Neurophysiology --- Neurotrophic functions --- Dendrite growth --- Dendritic growth --- Système nerveux --- Développement neurologique --- Embryologie. --- Malformations. --- Nervous System Malformations --- embryology.
Choose an application
This Special Issue is result of a call for papers of the Section Industrial Crystallization of MDPI’s scientific journal Crystals. It addresses scientists and engineers active in research and process & product development in life-science industries (e.g. pharmaceuticals, fine chemicals and biotechnology products) and bulk chemical applications (e.g. desalination) as well. The contributions comprise several fundamental and application-oriented facets of crystallization providing an overview of industrially relevant subjects in the field. Main issues cover phase equilibria and solid-state behavior of crystalline compounds, crystal shape and size and related measurement techniques. Melt and solution crystallization are considered specifically addressing contemporary aspects of continuous crystallization and process intensification.
Technology: general issues --- K-MER zeolite --- synthesis parameter --- morphology --- cyanoethylation of methanol --- catalyst --- multi-dendrite motion --- CA-LBM model --- dendritic growth --- natural convection --- numerical simulation --- melt crystallization --- freeze crystallization (FC) --- recycling --- ionic liquid (IL) --- solid–liquid equilibrium --- cellulose --- nanocrystals --- modification --- poly(butylene succinate) --- crystallization --- kinetics --- chirality --- deracemization --- preferential crystallization --- racemic conglomerate --- phase behavior --- polymorphism --- aryl glycerol ethers --- spherical BaTiO3 nanoparticle --- hydrothermal synthesis --- nanoscale TiO2 seed --- crystal growth --- dielectric property --- curcumin --- purification --- ternary mixture of curcuminoids --- reverse osmosis --- membrane fouling --- gypsum scaling --- fluorescent-tagged polyacrylate --- fluorescence --- scale inhibition mechanisms --- solvent effect --- crystal habit --- aspect ratio --- molecular dynamics (MD) --- surface structure --- amine --- biocatalysis --- enzyme --- process intensification --- enantioselective --- fluidized bed --- continuous --- chiral separation --- racemate resolution --- enantiomer --- asparagine monohydrate --- fine chemicals --- continuous crystallization --- crystal shape --- process design --- DTB crystallizer --- scale up --- L-serine --- L-alanine --- enantiomers --- isomorphic miscibility --- thermal expansion --- PXRD --- TRPXRD --- optical measurement techniques --- crystal size measurement --- inline probe --- crystal needles --- microcrystals --- microplate --- grid scanning --- in situ data collection --- n/a --- solid-liquid equilibrium
Choose an application
This Special Issue is result of a call for papers of the Section Industrial Crystallization of MDPI’s scientific journal Crystals. It addresses scientists and engineers active in research and process & product development in life-science industries (e.g. pharmaceuticals, fine chemicals and biotechnology products) and bulk chemical applications (e.g. desalination) as well. The contributions comprise several fundamental and application-oriented facets of crystallization providing an overview of industrially relevant subjects in the field. Main issues cover phase equilibria and solid-state behavior of crystalline compounds, crystal shape and size and related measurement techniques. Melt and solution crystallization are considered specifically addressing contemporary aspects of continuous crystallization and process intensification.
K-MER zeolite --- synthesis parameter --- morphology --- cyanoethylation of methanol --- catalyst --- multi-dendrite motion --- CA-LBM model --- dendritic growth --- natural convection --- numerical simulation --- melt crystallization --- freeze crystallization (FC) --- recycling --- ionic liquid (IL) --- solid–liquid equilibrium --- cellulose --- nanocrystals --- modification --- poly(butylene succinate) --- crystallization --- kinetics --- chirality --- deracemization --- preferential crystallization --- racemic conglomerate --- phase behavior --- polymorphism --- aryl glycerol ethers --- spherical BaTiO3 nanoparticle --- hydrothermal synthesis --- nanoscale TiO2 seed --- crystal growth --- dielectric property --- curcumin --- purification --- ternary mixture of curcuminoids --- reverse osmosis --- membrane fouling --- gypsum scaling --- fluorescent-tagged polyacrylate --- fluorescence --- scale inhibition mechanisms --- solvent effect --- crystal habit --- aspect ratio --- molecular dynamics (MD) --- surface structure --- amine --- biocatalysis --- enzyme --- process intensification --- enantioselective --- fluidized bed --- continuous --- chiral separation --- racemate resolution --- enantiomer --- asparagine monohydrate --- fine chemicals --- continuous crystallization --- crystal shape --- process design --- DTB crystallizer --- scale up --- L-serine --- L-alanine --- enantiomers --- isomorphic miscibility --- thermal expansion --- PXRD --- TRPXRD --- optical measurement techniques --- crystal size measurement --- inline probe --- crystal needles --- microcrystals --- microplate --- grid scanning --- in situ data collection --- n/a --- solid-liquid equilibrium
Choose an application
This Special Issue is result of a call for papers of the Section Industrial Crystallization of MDPI’s scientific journal Crystals. It addresses scientists and engineers active in research and process & product development in life-science industries (e.g. pharmaceuticals, fine chemicals and biotechnology products) and bulk chemical applications (e.g. desalination) as well. The contributions comprise several fundamental and application-oriented facets of crystallization providing an overview of industrially relevant subjects in the field. Main issues cover phase equilibria and solid-state behavior of crystalline compounds, crystal shape and size and related measurement techniques. Melt and solution crystallization are considered specifically addressing contemporary aspects of continuous crystallization and process intensification.
Technology: general issues --- K-MER zeolite --- synthesis parameter --- morphology --- cyanoethylation of methanol --- catalyst --- multi-dendrite motion --- CA-LBM model --- dendritic growth --- natural convection --- numerical simulation --- melt crystallization --- freeze crystallization (FC) --- recycling --- ionic liquid (IL) --- solid-liquid equilibrium --- cellulose --- nanocrystals --- modification --- poly(butylene succinate) --- crystallization --- kinetics --- chirality --- deracemization --- preferential crystallization --- racemic conglomerate --- phase behavior --- polymorphism --- aryl glycerol ethers --- spherical BaTiO3 nanoparticle --- hydrothermal synthesis --- nanoscale TiO2 seed --- crystal growth --- dielectric property --- curcumin --- purification --- ternary mixture of curcuminoids --- reverse osmosis --- membrane fouling --- gypsum scaling --- fluorescent-tagged polyacrylate --- fluorescence --- scale inhibition mechanisms --- solvent effect --- crystal habit --- aspect ratio --- molecular dynamics (MD) --- surface structure --- amine --- biocatalysis --- enzyme --- process intensification --- enantioselective --- fluidized bed --- continuous --- chiral separation --- racemate resolution --- enantiomer --- asparagine monohydrate --- fine chemicals --- continuous crystallization --- crystal shape --- process design --- DTB crystallizer --- scale up --- L-serine --- L-alanine --- enantiomers --- isomorphic miscibility --- thermal expansion --- PXRD --- TRPXRD --- optical measurement techniques --- crystal size measurement --- inline probe --- crystal needles --- microcrystals --- microplate --- grid scanning --- in situ data collection --- K-MER zeolite --- synthesis parameter --- morphology --- cyanoethylation of methanol --- catalyst --- multi-dendrite motion --- CA-LBM model --- dendritic growth --- natural convection --- numerical simulation --- melt crystallization --- freeze crystallization (FC) --- recycling --- ionic liquid (IL) --- solid-liquid equilibrium --- cellulose --- nanocrystals --- modification --- poly(butylene succinate) --- crystallization --- kinetics --- chirality --- deracemization --- preferential crystallization --- racemic conglomerate --- phase behavior --- polymorphism --- aryl glycerol ethers --- spherical BaTiO3 nanoparticle --- hydrothermal synthesis --- nanoscale TiO2 seed --- crystal growth --- dielectric property --- curcumin --- purification --- ternary mixture of curcuminoids --- reverse osmosis --- membrane fouling --- gypsum scaling --- fluorescent-tagged polyacrylate --- fluorescence --- scale inhibition mechanisms --- solvent effect --- crystal habit --- aspect ratio --- molecular dynamics (MD) --- surface structure --- amine --- biocatalysis --- enzyme --- process intensification --- enantioselective --- fluidized bed --- continuous --- chiral separation --- racemate resolution --- enantiomer --- asparagine monohydrate --- fine chemicals --- continuous crystallization --- crystal shape --- process design --- DTB crystallizer --- scale up --- L-serine --- L-alanine --- enantiomers --- isomorphic miscibility --- thermal expansion --- PXRD --- TRPXRD --- optical measurement techniques --- crystal size measurement --- inline probe --- crystal needles --- microcrystals --- microplate --- grid scanning --- in situ data collection
Listing 1 - 5 of 5 |
Sort by
|