Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
Chemical, Mineralogical and Isotopic Studies of Diagenesis of Carbonate and Clastic Sediments
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diagenesis of carbonates and clastic sediments encompasses the biochemical, mechanical, and chemical changes that occur in sediments subsequent to deposition and prior to low-grade metamorphism. These parameters which, to a large extent, control diagenesis in carbonates and clastic sediments include primary composition of the sediments, depositional facies, pore water chemistry, burial–thermal and tectonic evolution of the basin, and paleo-climatic conditions. Diagenetic processes involve widespread chemical, mineralogical, and isotopic modifications affected by the original mineralogy of carbonate and clastic sediments. These diagenetic alterations will impose a major control on porosity and permeability and hence on hydrocarbon reservoirs, water aquifers, and the presence of other important economic minerals. In this Special Issue, we have submissions focusing on understanding the interplay between the mineralogical and chemical changes in carbonates and clastic sediments and the diagenetic processes, fluid flow, tectonics, and mineral reactions at variable scales and environments from a verity of sedimentary basins. Quantitative analyses of diagenetic reactions in these sediments using a variety of techniques are essential for understanding the pathways of these reactions in different diagenetic environments.

Keywords

Research & information: general --- diagenesis --- authigenic minerals --- reservoir quality --- Eboliang --- Qaidam Basin --- clay minerals --- major elements --- trace elements --- sedimentary environment --- diagenetic Environment --- silicification --- meteoric diagenesis --- fractures --- deltaic sequence --- karst --- glacial period --- dolomitization --- Huron Domain --- Silurian --- Devonian --- fluid composition --- Michigan Basin --- bipyramidal quartz --- pseudohexagonal aragonite --- Iberian Range --- Upper Triassic --- hydrothermal circulation --- carbonate reservoirs --- sedimentation --- porosity --- platform carbonates --- REE + Y chemistry --- paleoceanographic proxies --- diagenetic proxies --- NE Turkey --- hydrothermal dolomite --- diagenetic settings --- optical petrography --- geochemical --- Triassic-Jurassic successions --- Provençal Domain --- diagenesis --- authigenic minerals --- reservoir quality --- Eboliang --- Qaidam Basin --- clay minerals --- major elements --- trace elements --- sedimentary environment --- diagenetic Environment --- silicification --- meteoric diagenesis --- fractures --- deltaic sequence --- karst --- glacial period --- dolomitization --- Huron Domain --- Silurian --- Devonian --- fluid composition --- Michigan Basin --- bipyramidal quartz --- pseudohexagonal aragonite --- Iberian Range --- Upper Triassic --- hydrothermal circulation --- carbonate reservoirs --- sedimentation --- porosity --- platform carbonates --- REE + Y chemistry --- paleoceanographic proxies --- diagenetic proxies --- NE Turkey --- hydrothermal dolomite --- diagenetic settings --- optical petrography --- geochemical --- Triassic-Jurassic successions --- Provençal Domain


Book
Chemical, Mineralogical and Isotopic Studies of Diagenesis of Carbonate and Clastic Sediments
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diagenesis of carbonates and clastic sediments encompasses the biochemical, mechanical, and chemical changes that occur in sediments subsequent to deposition and prior to low-grade metamorphism. These parameters which, to a large extent, control diagenesis in carbonates and clastic sediments include primary composition of the sediments, depositional facies, pore water chemistry, burial–thermal and tectonic evolution of the basin, and paleo-climatic conditions. Diagenetic processes involve widespread chemical, mineralogical, and isotopic modifications affected by the original mineralogy of carbonate and clastic sediments. These diagenetic alterations will impose a major control on porosity and permeability and hence on hydrocarbon reservoirs, water aquifers, and the presence of other important economic minerals. In this Special Issue, we have submissions focusing on understanding the interplay between the mineralogical and chemical changes in carbonates and clastic sediments and the diagenetic processes, fluid flow, tectonics, and mineral reactions at variable scales and environments from a verity of sedimentary basins. Quantitative analyses of diagenetic reactions in these sediments using a variety of techniques are essential for understanding the pathways of these reactions in different diagenetic environments.

Listing 1 - 2 of 2
Sort by