Listing 1 - 1 of 1 |
Sort by
|
Choose an application
Friction stir welding (FSW) is considered to be the most significant development in metal joining in decades and, in addition, is a ""green"" technology due to its energy efficiency, environmental friendliness, and versatility. This process offers a number of advantages over conventional joining processes. Furthermore, because welding occurs via the deformation of material at temperatures below the melting temperature, many problems commonly associated with joining of dissimilar alloys can be avoided, and thus, high-quality welds are produced. Due to this fact, FSW has been widely used in different industrial applications where metallurgical characteristics should be retained, such as in the aeronautic, naval, and automotive industries.
n/a --- microstructure --- material flow --- stainless steel --- materials position --- friction stir processing --- surface composites --- material orientation --- high nitrogen steel --- force–deflection model --- FSW --- mechanical properties --- FSW process --- dissimilar metal welding --- lognormal distribution --- grain orientation --- dissimilar joints --- friction-stir welding --- pin shapes --- deflection compensation control --- plunge depth control --- process analysis --- high-temperature softening materials --- Al/Fe dissimilar joining --- post-weld heat treatment --- aluminum alloy --- abnormal grain growth --- particle distribution --- intermetallic compounds --- non-equilibrium segregation --- microstructure analysis --- tilt angle --- Vickers microhardness --- the rotational speeds --- adaptive control --- offset position control --- friction stir spot welding --- friction --- plunge depth --- mechanical strength --- mechanical behaviour --- dissimilar welded joints --- friction stir welding --- Fe-containing constituents --- high rotation speed friction stir welding --- force-deflection model
Listing 1 - 1 of 1 |
Sort by
|