Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2021 (6)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Design and Control of Power Converters 2020
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.


Book
Design and Control of Power Converters 2020
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.


Book
Design and Control of Power Converters 2020
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.


Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency


Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency


Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency


Book
Control and Nonlinear Dynamics on Energy Conversion Systems
Authors: ---
ISBN: 3039211110 3039211102 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.

Keywords

multi-clearance --- neural network --- zero average dynamics --- Cable3D --- variable bus voltage MG --- explosion-magnetic generator --- quadratic boost --- matrix norm --- coordinated control system --- permanent magnet synchronous motor (PMSM) --- photovoltaic (PV) --- power conversion --- capacitance current pulse train control --- air gap eccentricity --- high step-up voltage gain --- voltage ripple --- offset-free --- goal representation heuristic dynamic programming (GrHDP) --- current mode control --- sliding mode observer (SMO) --- multi-model predictive control --- combined heat and power unit --- discontinuous conduction mode (DCM) --- current-pulse formation --- sliding mode control --- single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP) --- subharmonic oscillations --- DC micro grid --- supply air temperature --- air-handling unit (AHU) --- vibration characteristics --- magnetic saturation --- slope compensation --- fixed-point inducting control --- the load of suspension point in the z direction --- variable switching frequency DC-DC converters --- droop control --- Helmholtz number --- plasma accelerator --- contraction analysis --- sliding control --- bifurcations in control parameter --- disturbance observer --- DC motor --- multiphysics --- virtual impedance --- pulverizing system --- ultrahigh voltage conversion ratio --- corrugated pipe --- DC-DC converters --- maximum power point tracking (MPPT) --- dynamic model --- nonlinear dynamics --- new step-up converter --- micro-grid --- global stability --- extended back electromotive force (EEMF) --- small-signal model --- electromagnetic vibration --- nonlinear dynamic model --- excited modes --- data-driven --- rigid body rotation --- position sensorless --- prediction --- centralized vs. decentralized control --- inferential control --- boost-flyback converter --- calculation method --- switched reluctance generator --- monodromy matrix --- bridgeless converter --- decoupling control --- distributed architecture --- wave --- buck converter --- soft sensor --- model–plant mismatches --- whistling noise --- efficiency optimization --- steel catenary riser --- moving horizon estimation --- single artificial neuron (SAN) --- space mechanism --- two-stage bypass --- electrical machine --- harmonic suppression --- local vs. global optimization --- performance recovery --- reinforcement learning (RL) --- adaptive dynamic programming (ADP) --- overvoltage --- planetary gears --- maximum power point tracking --- DC-DC buck converter --- power quality --- average-current mode control --- feedback coefficient --- power factor correction (PFC) --- capacitance current --- predictive control --- rotor dynamics

Listing 1 - 7 of 7
Sort by