Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Within the second half of the last century, quantum cosmology concretely became one of the main research lines within gravitational theory and cosmology. Substantial progress has been made. Furthermore, quantum cosmology can become a domain that will gradually develop further over the next handful of decades, perhaps assisted by technological developments. Indications for new physics (i.e., beyond the standard model of particle physics or general relativity) could emerge and then the observable universe would surely be seen from quite a new perspective. This motivates bringing quantum cosmology to more research groups and individuals.This Special Issue (SI) aims to provide a wide set of reviews, ranging from foundational issues to (very) recent advancing discussions. Concretely, we want to inspire new work proposing observational tests, providing an aggregated set of contributions, covering several lines, some of which are thoroughly explored, some allowing progress, and others much unexplored. The aim of this SI is motivate new researchers to employ and further develop quantum cosmology over the forthcoming decades. Textbooks and reviews exist on the present subject, and this SI will complementarily assist in offering open access to a set of wide-ranging reviews. Hopefully, this will assist new interested researchers, in having a single open access online volume, with reviews that can help. In particular, this will help in selecting what to explore, what to read in more detail, where to proceed, and what to investigate further within quantum cosmology.
Research & information: general --- Physics --- string cosmology --- quantum cosmology --- Wheeler-DeWitt equation --- loop quantum cosmology --- observations --- classical and quantum cosmology --- time --- quantum fields in curved spacetime --- Brans–Dicke theory --- bounce models --- de Broglie–Bohm interpretation --- quantum geometrodynamics --- extended theories of gravity --- dark energy singularities --- quantum gravity --- Hawking radiation --- entanglement entropy --- uniqueness of the quantization --- polymer quantum mechanics --- bounce --- no-boundary proposal --- instantons --- multiverse --- superspace --- third quantisation --- universe–antiuniverse pair --- weyl curvature hypothesis --- early universe cosmology --- singularity and bounce --- cyclic universe --- quantum fields --- backreaction effects --- supersymmetry --- noncommutativity --- generalized uncertainty principles --- canonical quantum gravity --- clocks --- noether symmetries --- ADM formalism --- exact solutions --- supersymmetric quantum mechanics --- shape invariant potentials --- supersymmetric quantum cosmology --- n/a --- Brans-Dicke theory --- de Broglie-Bohm interpretation --- universe-antiuniverse pair
Choose an application
Within the second half of the last century, quantum cosmology concretely became one of the main research lines within gravitational theory and cosmology. Substantial progress has been made. Furthermore, quantum cosmology can become a domain that will gradually develop further over the next handful of decades, perhaps assisted by technological developments. Indications for new physics (i.e., beyond the standard model of particle physics or general relativity) could emerge and then the observable universe would surely be seen from quite a new perspective. This motivates bringing quantum cosmology to more research groups and individuals.This Special Issue (SI) aims to provide a wide set of reviews, ranging from foundational issues to (very) recent advancing discussions. Concretely, we want to inspire new work proposing observational tests, providing an aggregated set of contributions, covering several lines, some of which are thoroughly explored, some allowing progress, and others much unexplored. The aim of this SI is motivate new researchers to employ and further develop quantum cosmology over the forthcoming decades. Textbooks and reviews exist on the present subject, and this SI will complementarily assist in offering open access to a set of wide-ranging reviews. Hopefully, this will assist new interested researchers, in having a single open access online volume, with reviews that can help. In particular, this will help in selecting what to explore, what to read in more detail, where to proceed, and what to investigate further within quantum cosmology.
string cosmology --- quantum cosmology --- Wheeler-DeWitt equation --- loop quantum cosmology --- observations --- classical and quantum cosmology --- time --- quantum fields in curved spacetime --- Brans–Dicke theory --- bounce models --- de Broglie–Bohm interpretation --- quantum geometrodynamics --- extended theories of gravity --- dark energy singularities --- quantum gravity --- Hawking radiation --- entanglement entropy --- uniqueness of the quantization --- polymer quantum mechanics --- bounce --- no-boundary proposal --- instantons --- multiverse --- superspace --- third quantisation --- universe–antiuniverse pair --- weyl curvature hypothesis --- early universe cosmology --- singularity and bounce --- cyclic universe --- quantum fields --- backreaction effects --- supersymmetry --- noncommutativity --- generalized uncertainty principles --- canonical quantum gravity --- clocks --- noether symmetries --- ADM formalism --- exact solutions --- supersymmetric quantum mechanics --- shape invariant potentials --- supersymmetric quantum cosmology --- n/a --- Brans-Dicke theory --- de Broglie-Bohm interpretation --- universe-antiuniverse pair
Choose an application
Within the second half of the last century, quantum cosmology concretely became one of the main research lines within gravitational theory and cosmology. Substantial progress has been made. Furthermore, quantum cosmology can become a domain that will gradually develop further over the next handful of decades, perhaps assisted by technological developments. Indications for new physics (i.e., beyond the standard model of particle physics or general relativity) could emerge and then the observable universe would surely be seen from quite a new perspective. This motivates bringing quantum cosmology to more research groups and individuals.This Special Issue (SI) aims to provide a wide set of reviews, ranging from foundational issues to (very) recent advancing discussions. Concretely, we want to inspire new work proposing observational tests, providing an aggregated set of contributions, covering several lines, some of which are thoroughly explored, some allowing progress, and others much unexplored. The aim of this SI is motivate new researchers to employ and further develop quantum cosmology over the forthcoming decades. Textbooks and reviews exist on the present subject, and this SI will complementarily assist in offering open access to a set of wide-ranging reviews. Hopefully, this will assist new interested researchers, in having a single open access online volume, with reviews that can help. In particular, this will help in selecting what to explore, what to read in more detail, where to proceed, and what to investigate further within quantum cosmology.
Research & information: general --- Physics --- string cosmology --- quantum cosmology --- Wheeler-DeWitt equation --- loop quantum cosmology --- observations --- classical and quantum cosmology --- time --- quantum fields in curved spacetime --- Brans-Dicke theory --- bounce models --- de Broglie-Bohm interpretation --- quantum geometrodynamics --- extended theories of gravity --- dark energy singularities --- quantum gravity --- Hawking radiation --- entanglement entropy --- uniqueness of the quantization --- polymer quantum mechanics --- bounce --- no-boundary proposal --- instantons --- multiverse --- superspace --- third quantisation --- universe-antiuniverse pair --- weyl curvature hypothesis --- early universe cosmology --- singularity and bounce --- cyclic universe --- quantum fields --- backreaction effects --- supersymmetry --- noncommutativity --- generalized uncertainty principles --- canonical quantum gravity --- clocks --- noether symmetries --- ADM formalism --- exact solutions --- supersymmetric quantum mechanics --- shape invariant potentials --- supersymmetric quantum cosmology
Choose an application
Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in ""deeper-level"" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de Broglie-Bohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeper-level questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and non-classical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.
non-locality --- ultraviolet divergence --- constraints --- Kilmister equation --- bohmian mechanics --- epistemic agent --- Bohmian mechanics --- relational space --- Feynman paths --- Langevin equation --- quantum causality --- emergent quantum gravity --- quantum ontology --- interpretations --- emergent quantum state --- undecidable dynamics --- molecule interference --- emergent quantum mechanics --- no-hidden-variables theorems --- mind–body problem --- physical ontology --- quantum foundations --- matter-wave optics --- conscious agent --- diffusion constant --- Bell theorem --- Burgers equation --- objective non-signaling constraint --- self-referential dynamics --- Bell inequality --- interpretation --- photochemistry --- Born rule statistics --- sub-quantum dynamics --- dynamical chaos --- weak measurement --- p-adic metric --- Levi-Civita connection --- David Bohm --- H-theorem --- the causal arrow of time --- strong coupling --- vortical dynamics --- fundamental irreversibility --- magnetic deflectometry --- quantum thermodynamics --- de Broglie–Bohm interpretation of quantum mechanics --- wavefunction nodes --- stochastic quantum dynamics --- entropic gravity --- metrology --- Schrödinger equation --- gauge freedom --- Monte Carlo simulations --- micro-constituents --- nonequilibrium thermodynamics --- Bell’s theorem --- emergent space-time --- spin --- quantum field theory --- time-symmetry --- Gaussian-like solutions --- Hamiltonian --- number theory --- fractional velocity --- ergodicity --- fractal geometry --- atomic metastable states --- operator thermodynamic functions --- Canonical Presentation --- Retrocausation --- interpretations of quantum mechanics --- Bohm theory --- quantum mechanics --- zero-point field --- conspiracy --- pilot wave --- quantum holism --- toy-models --- curvature tensor --- Aharonov–Bohm effect --- computational irreducibility --- Stochastic Electrodynamics --- diffraction --- retrocausality --- resonances in quantum systems --- stochastic differential equations --- Bianchi identity --- past of the photon --- commutator --- relational interpretation of quantum mechanics --- free will --- nomology --- trajectories --- primitive ontology --- Mach–Zehnder interferometer --- weak values --- singular limit --- interior-boundary condition --- Poincaré recurrence --- quantum inaccessibility --- symplectic camel --- surrealistic trajectories --- observables --- Stern-Gerlach --- decoherence --- quantum non-equilibrium --- generalized Lagrangian paths --- superdeterminism --- black hole thermodynamics --- nonlocality --- measurement problem --- entropy and time evolution --- bouncing oil droplets --- spontaneous state reduction --- quantum theory --- many interacting worlds --- complex entropy. --- Turing incomputability --- iterant --- space-time fluctuations --- quantum potential --- ontological quantum mechanics --- photon trajectory --- Dove prism --- the Friedrichs model --- contextuality --- discrete calculus --- transition probability amplitude --- gravity --- pilot-wave theory --- matter-waves --- de Broglie-Bohm theory --- covariant quantum gravity --- atom-surface scattering --- de Broglie–Bohm theory
Choose an application
Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in ""deeper-level"" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de Broglie-Bohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeper-level questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and non-classical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.
non-locality --- ultraviolet divergence --- constraints --- Kilmister equation --- bohmian mechanics --- epistemic agent --- Bohmian mechanics --- relational space --- Feynman paths --- Langevin equation --- quantum causality --- emergent quantum gravity --- quantum ontology --- interpretations --- emergent quantum state --- undecidable dynamics --- molecule interference --- emergent quantum mechanics --- no-hidden-variables theorems --- mind–body problem --- physical ontology --- quantum foundations --- matter-wave optics --- conscious agent --- diffusion constant --- Bell theorem --- Burgers equation --- objective non-signaling constraint --- self-referential dynamics --- Bell inequality --- interpretation --- photochemistry --- Born rule statistics --- sub-quantum dynamics --- dynamical chaos --- weak measurement --- p-adic metric --- Levi-Civita connection --- David Bohm --- H-theorem --- the causal arrow of time --- strong coupling --- vortical dynamics --- fundamental irreversibility --- magnetic deflectometry --- quantum thermodynamics --- de Broglie–Bohm interpretation of quantum mechanics --- wavefunction nodes --- stochastic quantum dynamics --- entropic gravity --- metrology --- Schrödinger equation --- gauge freedom --- Monte Carlo simulations --- micro-constituents --- nonequilibrium thermodynamics --- Bell’s theorem --- emergent space-time --- spin --- quantum field theory --- time-symmetry --- Gaussian-like solutions --- Hamiltonian --- number theory --- fractional velocity --- ergodicity --- fractal geometry --- atomic metastable states --- operator thermodynamic functions --- Canonical Presentation --- Retrocausation --- interpretations of quantum mechanics --- Bohm theory --- quantum mechanics --- zero-point field --- conspiracy --- pilot wave --- quantum holism --- toy-models --- curvature tensor --- Aharonov–Bohm effect --- computational irreducibility --- Stochastic Electrodynamics --- diffraction --- retrocausality --- resonances in quantum systems --- stochastic differential equations --- Bianchi identity --- past of the photon --- commutator --- relational interpretation of quantum mechanics --- free will --- nomology --- trajectories --- primitive ontology --- Mach–Zehnder interferometer --- weak values --- singular limit --- interior-boundary condition --- Poincaré recurrence --- quantum inaccessibility --- symplectic camel --- surrealistic trajectories --- observables --- Stern-Gerlach --- decoherence --- quantum non-equilibrium --- generalized Lagrangian paths --- superdeterminism --- black hole thermodynamics --- nonlocality --- measurement problem --- entropy and time evolution --- bouncing oil droplets --- spontaneous state reduction --- quantum theory --- many interacting worlds --- complex entropy. --- Turing incomputability --- iterant --- space-time fluctuations --- quantum potential --- ontological quantum mechanics --- photon trajectory --- Dove prism --- the Friedrichs model --- contextuality --- discrete calculus --- transition probability amplitude --- gravity --- pilot-wave theory --- matter-waves --- de Broglie-Bohm theory --- covariant quantum gravity --- atom-surface scattering --- de Broglie–Bohm theory
Choose an application
Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in ""deeper-level"" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de Broglie-Bohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeper-level questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and non-classical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.
non-locality --- ultraviolet divergence --- constraints --- Kilmister equation --- bohmian mechanics --- epistemic agent --- Bohmian mechanics --- relational space --- Feynman paths --- Langevin equation --- quantum causality --- emergent quantum gravity --- quantum ontology --- interpretations --- emergent quantum state --- undecidable dynamics --- molecule interference --- emergent quantum mechanics --- no-hidden-variables theorems --- mind–body problem --- physical ontology --- quantum foundations --- matter-wave optics --- conscious agent --- diffusion constant --- Bell theorem --- Burgers equation --- objective non-signaling constraint --- self-referential dynamics --- Bell inequality --- interpretation --- photochemistry --- Born rule statistics --- sub-quantum dynamics --- dynamical chaos --- weak measurement --- p-adic metric --- Levi-Civita connection --- David Bohm --- H-theorem --- the causal arrow of time --- strong coupling --- vortical dynamics --- fundamental irreversibility --- magnetic deflectometry --- quantum thermodynamics --- de Broglie–Bohm interpretation of quantum mechanics --- wavefunction nodes --- stochastic quantum dynamics --- entropic gravity --- metrology --- Schrödinger equation --- gauge freedom --- Monte Carlo simulations --- micro-constituents --- nonequilibrium thermodynamics --- Bell’s theorem --- emergent space-time --- spin --- quantum field theory --- time-symmetry --- Gaussian-like solutions --- Hamiltonian --- number theory --- fractional velocity --- ergodicity --- fractal geometry --- atomic metastable states --- operator thermodynamic functions --- Canonical Presentation --- Retrocausation --- interpretations of quantum mechanics --- Bohm theory --- quantum mechanics --- zero-point field --- conspiracy --- pilot wave --- quantum holism --- toy-models --- curvature tensor --- Aharonov–Bohm effect --- computational irreducibility --- Stochastic Electrodynamics --- diffraction --- retrocausality --- resonances in quantum systems --- stochastic differential equations --- Bianchi identity --- past of the photon --- commutator --- relational interpretation of quantum mechanics --- free will --- nomology --- trajectories --- primitive ontology --- Mach–Zehnder interferometer --- weak values --- singular limit --- interior-boundary condition --- Poincaré recurrence --- quantum inaccessibility --- symplectic camel --- surrealistic trajectories --- observables --- Stern-Gerlach --- decoherence --- quantum non-equilibrium --- generalized Lagrangian paths --- superdeterminism --- black hole thermodynamics --- nonlocality --- measurement problem --- entropy and time evolution --- bouncing oil droplets --- spontaneous state reduction --- quantum theory --- many interacting worlds --- complex entropy. --- Turing incomputability --- iterant --- space-time fluctuations --- quantum potential --- ontological quantum mechanics --- photon trajectory --- Dove prism --- the Friedrichs model --- contextuality --- discrete calculus --- transition probability amplitude --- gravity --- pilot-wave theory --- matter-waves --- de Broglie-Bohm theory --- covariant quantum gravity --- atom-surface scattering --- de Broglie–Bohm theory
Listing 1 - 6 of 6 |
Sort by
|