Narrow your search
Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Dissertation
Final work :Approaches to improve mass conservation in PFEM for the simulation of free-surface flows
Authors: --- --- ---
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solving complex simulations while ensuring high accuracy is a challenge, as seen in simulations that involve free-surfaces and large displacements. One way to better solve them is via the Particle Finite Element Method (PFEM). The Particle Finite Element Method (PFEM) is a numerical method that discretizes the body into a set of points. This set of points is used to create a Finite Element mesh that moves in time following the cloud of points. PFEM then combines a Lagrangian description with the classical Finite Element Method. The strength of PFEM is that it solves problems that involve large displacements and severe topological changes. However, current PFEM implementations do not guarantee mass conservation. Therefore, it is necessary to find an approach that improves it. This work focuses on implementing numerical techniques related to the mesh to improve the conservation of mass in PFEM.&#13;&#13;In this study, the aforementioned techniques to improve mass conservation are implemented for the in-house PFEM Matlab code of the LTAS-MN2L group at the University of Liege. A study of the proposed methodologies is also presented, including: (1) a sloshing problem, (2) three different dam breaks. It is concluded that the Adjustment of the fluid’s height method that addresses both terms of mass variation yields the greatest improvement in mass conservation. Cruchaga’s approach is physically more coherent, as it corrects the free surface nodes’ positions based on the velocity of each node.


Book
Flood Early Warning and Risk Modelling
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Extreme hydrological phenomena are one of the most common causes of human life loss and material damage as a result of the manifestation of natural hazards around human communities. Climatic changes have directly impacted the temporal distribution of previously known flood events, inducing significantly increased frequency rates as well as manifestation intensities. Understanding the occurrence and manifestation behavior of flood risk as well as identifying the most common time intervals during which there is a greater probability of flood occurrence should be a subject of social priority, given the potential casualties and damage involved. However, considering the numerous flood analysis models that have been currently developed, this phenomenon has not yet been fully comprehended due to the numerous technical challenges that have arisen. These challenges can range from lack of measured field data to difficulties in integrating spatial layers of different scales as well as other potential digital restrictions.The aim of the current book is to promote publications that address flood analysis and apply some of the most novel inundation prediction models, as well as various hydrological risk simulations related to floods, that will enhance the current state of knowledge in the field as well as lead toward a better understanding of flood risk modeling. Furthermore, in the current book, the temporal aspect of flood propagation, including alert times, warning systems, flood time distribution cartographic material, and the numerous parameters involved in flood risk modeling, are discussed.


Book
Flood Early Warning and Risk Modelling
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Extreme hydrological phenomena are one of the most common causes of human life loss and material damage as a result of the manifestation of natural hazards around human communities. Climatic changes have directly impacted the temporal distribution of previously known flood events, inducing significantly increased frequency rates as well as manifestation intensities. Understanding the occurrence and manifestation behavior of flood risk as well as identifying the most common time intervals during which there is a greater probability of flood occurrence should be a subject of social priority, given the potential casualties and damage involved. However, considering the numerous flood analysis models that have been currently developed, this phenomenon has not yet been fully comprehended due to the numerous technical challenges that have arisen. These challenges can range from lack of measured field data to difficulties in integrating spatial layers of different scales as well as other potential digital restrictions.The aim of the current book is to promote publications that address flood analysis and apply some of the most novel inundation prediction models, as well as various hydrological risk simulations related to floods, that will enhance the current state of knowledge in the field as well as lead toward a better understanding of flood risk modeling. Furthermore, in the current book, the temporal aspect of flood propagation, including alert times, warning systems, flood time distribution cartographic material, and the numerous parameters involved in flood risk modeling, are discussed.


Book
Flood Early Warning and Risk Modelling
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Extreme hydrological phenomena are one of the most common causes of human life loss and material damage as a result of the manifestation of natural hazards around human communities. Climatic changes have directly impacted the temporal distribution of previously known flood events, inducing significantly increased frequency rates as well as manifestation intensities. Understanding the occurrence and manifestation behavior of flood risk as well as identifying the most common time intervals during which there is a greater probability of flood occurrence should be a subject of social priority, given the potential casualties and damage involved. However, considering the numerous flood analysis models that have been currently developed, this phenomenon has not yet been fully comprehended due to the numerous technical challenges that have arisen. These challenges can range from lack of measured field data to difficulties in integrating spatial layers of different scales as well as other potential digital restrictions.The aim of the current book is to promote publications that address flood analysis and apply some of the most novel inundation prediction models, as well as various hydrological risk simulations related to floods, that will enhance the current state of knowledge in the field as well as lead toward a better understanding of flood risk modeling. Furthermore, in the current book, the temporal aspect of flood propagation, including alert times, warning systems, flood time distribution cartographic material, and the numerous parameters involved in flood risk modeling, are discussed.


Book
Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.

Keywords

check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard


Book
Interaction between Waves and Maritime Structures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the result of a stimulating Special Issue of Water, focusing on the “Interaction between waves and Maritime Structures”. This broadly inclusive title allowed the gathering of articles on different topics of engineering concern, making the book appeal to both scientists and practical engineers. Original contributions on evergreen problems, such as wave overtopping at conventional and unconventional coastal structures, wave-induced pressures at vertical walls, hydraulic stability of rubble mound breakwaters and dynamics of crown-walls indeed represent the main core of the book; however, other intriguing research topics are also tackled, including the solution of the Navier–Stokes equations for biphase flows, the downscaling of large maritime structures in a physical lab, floating bodies mechanics and the numerical modeling of coastline evolution.


Book
Interaction between Waves and Maritime Structures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the result of a stimulating Special Issue of Water, focusing on the “Interaction between waves and Maritime Structures”. This broadly inclusive title allowed the gathering of articles on different topics of engineering concern, making the book appeal to both scientists and practical engineers. Original contributions on evergreen problems, such as wave overtopping at conventional and unconventional coastal structures, wave-induced pressures at vertical walls, hydraulic stability of rubble mound breakwaters and dynamics of crown-walls indeed represent the main core of the book; however, other intriguing research topics are also tackled, including the solution of the Navier–Stokes equations for biphase flows, the downscaling of large maritime structures in a physical lab, floating bodies mechanics and the numerical modeling of coastline evolution.


Book
Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.

Keywords

Research & information: general --- check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard --- check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard


Book
Interaction between Waves and Maritime Structures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the result of a stimulating Special Issue of Water, focusing on the “Interaction between waves and Maritime Structures”. This broadly inclusive title allowed the gathering of articles on different topics of engineering concern, making the book appeal to both scientists and practical engineers. Original contributions on evergreen problems, such as wave overtopping at conventional and unconventional coastal structures, wave-induced pressures at vertical walls, hydraulic stability of rubble mound breakwaters and dynamics of crown-walls indeed represent the main core of the book; however, other intriguing research topics are also tackled, including the solution of the Navier–Stokes equations for biphase flows, the downscaling of large maritime structures in a physical lab, floating bodies mechanics and the numerical modeling of coastline evolution.

Keywords

Technology: general issues --- rock armor stability --- breakwater --- damage --- notional permeability factor --- crown wall failure --- dynamic response --- sliding --- overturning --- bearing capacity --- ship motions --- in-situ observations --- port operation --- transfer functions --- meteorological and ocean conditions --- vessel dimensions --- electrical platform --- hydrodynamic response --- strain --- acceleration --- hydroelastic similarity --- laboratory experiment --- wave overtopping --- flow velocity --- flow depth --- dike --- wave breaking --- experiments --- numerical modelling --- floating cylinder --- water filled --- motion capturing --- wave tank --- wave gauges --- fluid-structure interaction --- free surface --- sloshing --- image analysis --- green water --- wet dam-break bore --- 2D experimental study --- water elevation database --- Venetian lagoon --- flooding --- astronomical tide --- storm surge --- experimental investigation --- two-phase flows --- fluid-structure interactions --- wave decomposition --- floating body --- recurves --- recurve geometry --- vertical seawalls --- wave loads and pressures --- pulsating and impulsive conditions --- validation experiment --- shoreline evolution --- littoral drift --- equivalent wave --- one-line equation --- coastal defenses --- structure response --- rock armor stability --- breakwater --- damage --- notional permeability factor --- crown wall failure --- dynamic response --- sliding --- overturning --- bearing capacity --- ship motions --- in-situ observations --- port operation --- transfer functions --- meteorological and ocean conditions --- vessel dimensions --- electrical platform --- hydrodynamic response --- strain --- acceleration --- hydroelastic similarity --- laboratory experiment --- wave overtopping --- flow velocity --- flow depth --- dike --- wave breaking --- experiments --- numerical modelling --- floating cylinder --- water filled --- motion capturing --- wave tank --- wave gauges --- fluid-structure interaction --- free surface --- sloshing --- image analysis --- green water --- wet dam-break bore --- 2D experimental study --- water elevation database --- Venetian lagoon --- flooding --- astronomical tide --- storm surge --- experimental investigation --- two-phase flows --- fluid-structure interactions --- wave decomposition --- floating body --- recurves --- recurve geometry --- vertical seawalls --- wave loads and pressures --- pulsating and impulsive conditions --- validation experiment --- shoreline evolution --- littoral drift --- equivalent wave --- one-line equation --- coastal defenses --- structure response


Book
Green Low-Carbon Technology for Metalliferous Minerals
Author:
ISBN: 3036557989 3036557970 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metalliferous minerals play a central role in the global economy. They will continue to provide the raw materials we need for industrial processes. Significant challenges will likely emerge if the climate-driven green and low-carbon development transition of metalliferous mineral exploitation is not managed responsibly and sustainably. Green low-carbon technology is vital to promote the development of metalliferous mineral resources shifting from extensive and destructive mining to clean and energy-saving mining in future decades. Global mining scientists and engineers have conducted a lot of research in related fields, such as green mining, ecological mining, energy-saving mining, and mining solid waste recycling, and have achieved a great deal of innovative progress and achievements. This Special Issue intends to collect the latest developments in the green low-carbon mining field, written by well-known researchers who have contributed to the innovation of new technologies, process optimization methods, or energy-saving techniques in metalliferous minerals development.

Keywords

Technology: general issues --- History of engineering & technology --- Mining technology & engineering --- metallurgical slag-based binders --- solidification/stabilisation --- As(III) --- As(V) --- calcium hydroxide --- sublevel caving --- numerical simulation --- physical model --- structural parameter --- green mining --- limestone --- high temperature --- confining pressure --- SHPB --- constitutive model --- open-pit mine --- PLAXIS 3D --- dynamic load --- safety factor --- acceleration --- particle sedimentation --- filling mining --- degree of influence --- pipeline transportation --- solid waste utilization --- tailings --- reclamation risk --- hazard identification --- complex network --- hazard management --- digital mine --- mine short-term production planning --- haulage equipment dispatch plan --- ABCA --- NSGA --- settlement velocity measurement --- K-means --- tailings backfill --- unsupervised learning --- cemented paste backfill --- ESEM --- picture processing --- floc networks --- pumping agent --- fractal dimension --- backfill slurry --- strength of cemented backfill --- inhomogeneity of cemented backfill --- cemented tailings backfill --- copper --- zinc --- recovery --- sulfide concentrate --- artificial microbial community --- granular backfill --- bearing characteristics --- numerical model --- particle size --- surface subsidence --- blasting dust movement --- dust concentration --- particle size distribution --- blasting dust reduction --- backfill --- metal mine --- log-sigmoid --- tailings pond --- regional distribution --- dam break --- accident statistics --- causation analysis --- backfilling --- increasing resistance and reducing pressure --- computational fluid dynamics --- spiral pipe --- stowing gradient --- coal-based solid waste --- orthogonal experiment --- strength development --- regression analysis --- engineering performance --- n/a

Listing 1 - 10 of 13 << page
of 2
>>
Sort by