Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2022 (3)

2021 (9)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
New Trends on the Combustion Processes in Spark Ignition Engines
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on "New Trends on the Combustion Processes in Spark Ignition Engines" contains nine papers on new developments on Internal Combustion (IC) engines aiming to enhance their efficiency, leading to the reduction of fossil CO2 and other gaseous pollutants. It is divided into two parts. In the initial part, the focus in on fuels, with four papers discussing the use of biofuels and other alternative fuels that can be used in different types of IC Engines. Additionally, conventional fuels are tested in order to evaluate their optimal use in new downsizing high-boost engines. A revision paper on alternative fuels is also included. The second part involves the study and improvement of engine combustion diagnostics as well as the presentation of an alternative type of propulsion system.


Book
New Trends on the Combustion Processes in Spark Ignition Engines
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on "New Trends on the Combustion Processes in Spark Ignition Engines" contains nine papers on new developments on Internal Combustion (IC) engines aiming to enhance their efficiency, leading to the reduction of fossil CO2 and other gaseous pollutants. It is divided into two parts. In the initial part, the focus in on fuels, with four papers discussing the use of biofuels and other alternative fuels that can be used in different types of IC Engines. Additionally, conventional fuels are tested in order to evaluate their optimal use in new downsizing high-boost engines. A revision paper on alternative fuels is also included. The second part involves the study and improvement of engine combustion diagnostics as well as the presentation of an alternative type of propulsion system.

Keywords

Technology: general issues --- iso-octane --- n-heptane --- toluene --- surrogate fuels --- burning velocity --- combustion bomb --- octane number --- knocking --- spark-ignition --- performance --- knock sensor --- fuel economy --- vehicle acceleration --- spark ignition --- calorimeter --- thermal energy --- spark plug --- natural gas engine --- Biodiesel --- diesel engines --- diethyl ether --- ethanol --- biofuels --- emissions --- fuels --- synthetic fuels --- internal combustion engine --- alternative fuels --- lipid bio-oils --- pyrogasoline --- exhaust emissions and spark-ignition engine --- combustion optimization --- cylinder-to-cylinder variation --- cycle-to-cycle variation --- fuel consumption --- 0D-1D engine modeling --- experiments --- axial engines --- wobble plate --- opposed piston engine --- uniflow scavenging --- variable compression ratio --- variable valve timing --- downsizing --- downspeeding --- multifuel potential --- Ion current --- cylinder pressure --- cooperative combustion diagnosis and control --- field-programmable gate array --- artificial neural network --- iso-octane --- n-heptane --- toluene --- surrogate fuels --- burning velocity --- combustion bomb --- octane number --- knocking --- spark-ignition --- performance --- knock sensor --- fuel economy --- vehicle acceleration --- spark ignition --- calorimeter --- thermal energy --- spark plug --- natural gas engine --- Biodiesel --- diesel engines --- diethyl ether --- ethanol --- biofuels --- emissions --- fuels --- synthetic fuels --- internal combustion engine --- alternative fuels --- lipid bio-oils --- pyrogasoline --- exhaust emissions and spark-ignition engine --- combustion optimization --- cylinder-to-cylinder variation --- cycle-to-cycle variation --- fuel consumption --- 0D-1D engine modeling --- experiments --- axial engines --- wobble plate --- opposed piston engine --- uniflow scavenging --- variable compression ratio --- variable valve timing --- downsizing --- downspeeding --- multifuel potential --- Ion current --- cylinder pressure --- cooperative combustion diagnosis and control --- field-programmable gate array --- artificial neural network


Book
New Trends on the Combustion Processes in Spark Ignition Engines
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on "New Trends on the Combustion Processes in Spark Ignition Engines" contains nine papers on new developments on Internal Combustion (IC) engines aiming to enhance their efficiency, leading to the reduction of fossil CO2 and other gaseous pollutants. It is divided into two parts. In the initial part, the focus in on fuels, with four papers discussing the use of biofuels and other alternative fuels that can be used in different types of IC Engines. Additionally, conventional fuels are tested in order to evaluate their optimal use in new downsizing high-boost engines. A revision paper on alternative fuels is also included. The second part involves the study and improvement of engine combustion diagnostics as well as the presentation of an alternative type of propulsion system.


Book
Marine Engines Performance and Emissions
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains a collection of peer-review scientific papers about marine engines’ performance and emissions. These papers were carefully selected for the “Marine Engines Performance and Emissions” Special Issue of the Journal of Marine Science and Engineering. Recent advancements in engine technology have allowed designers to reduce emissions and improve performance. Nevertheless, further efforts are needed to comply with the ever increased emission legislations. This book was conceived for people interested in marine engines. This information concerning recent developments may be helpful to academics, researchers, and professionals engaged in the field of marine engineering.

Keywords

Technology: general issues --- CFD --- NOx --- engine --- ammonia --- water injection --- marine two-stroke diesel engine --- mean value engine model --- compressor model --- in-cylinder pressure trace --- model calibration --- marine propulsion system --- shaft generator --- power take-in --- power take-off --- energy efficiency design index --- energy efficiency operational indicator --- gradient vector optimization --- power converter --- torque oriented control --- scrubber --- EGCS --- emissions --- particles --- PM --- BC --- exhaust gases --- on board measurements --- reduction --- gaseous emissions --- biodiesel mixtures --- marine --- turbocharger --- bladed disc --- measurement --- laser --- simulation --- ships diesel engines --- exhaust gas emission --- fuel mixtures --- rapeseed oil methyl ester --- marine diesel oil --- fuel injection parameters --- ship propulsion system --- electric power generating system --- hybrid propulsion --- propulsion control --- LNG --- mission profile --- power take off/in --- pneumatic flexible shaft coupling --- pneumatic tuner of torsional oscillations --- torsional vibration --- semi-active vibroisolation --- constant twist angle control --- fan characteristics --- model-based control --- pneumatic bellows --- MCDM --- marine engine --- injection --- consumption --- method of characteristics --- one-dimensional numerical analysis --- single cylinder diesel engine --- mass flow rate --- intake and exhaust system --- methane slip --- methane oxidation catalyst --- natural gas --- CFD --- NOx --- engine --- ammonia --- water injection --- marine two-stroke diesel engine --- mean value engine model --- compressor model --- in-cylinder pressure trace --- model calibration --- marine propulsion system --- shaft generator --- power take-in --- power take-off --- energy efficiency design index --- energy efficiency operational indicator --- gradient vector optimization --- power converter --- torque oriented control --- scrubber --- EGCS --- emissions --- particles --- PM --- BC --- exhaust gases --- on board measurements --- reduction --- gaseous emissions --- biodiesel mixtures --- marine --- turbocharger --- bladed disc --- measurement --- laser --- simulation --- ships diesel engines --- exhaust gas emission --- fuel mixtures --- rapeseed oil methyl ester --- marine diesel oil --- fuel injection parameters --- ship propulsion system --- electric power generating system --- hybrid propulsion --- propulsion control --- LNG --- mission profile --- power take off/in --- pneumatic flexible shaft coupling --- pneumatic tuner of torsional oscillations --- torsional vibration --- semi-active vibroisolation --- constant twist angle control --- fan characteristics --- model-based control --- pneumatic bellows --- MCDM --- marine engine --- injection --- consumption --- method of characteristics --- one-dimensional numerical analysis --- single cylinder diesel engine --- mass flow rate --- intake and exhaust system --- methane slip --- methane oxidation catalyst --- natural gas


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

Technology: general issues --- History of engineering & technology --- Mechanical engineering & materials --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

Technology: general issues --- History of engineering & technology --- Mechanical engineering & materials --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution


Book
Marine Engines Performance and Emissions
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains a collection of peer-review scientific papers about marine engines’ performance and emissions. These papers were carefully selected for the “Marine Engines Performance and Emissions” Special Issue of the Journal of Marine Science and Engineering. Recent advancements in engine technology have allowed designers to reduce emissions and improve performance. Nevertheless, further efforts are needed to comply with the ever increased emission legislations. This book was conceived for people interested in marine engines. This information concerning recent developments may be helpful to academics, researchers, and professionals engaged in the field of marine engineering.

Keywords

Technology: general issues --- CFD --- NOx --- engine --- ammonia --- water injection --- marine two-stroke diesel engine --- mean value engine model --- compressor model --- in-cylinder pressure trace --- model calibration --- marine propulsion system --- shaft generator --- power take-in --- power take-off --- energy efficiency design index --- energy efficiency operational indicator --- gradient vector optimization --- power converter --- torque oriented control --- scrubber --- EGCS --- emissions --- particles --- PM --- BC --- exhaust gases --- on board measurements --- reduction --- gaseous emissions --- biodiesel mixtures --- marine --- turbocharger --- bladed disc --- measurement --- laser --- simulation --- ships diesel engines --- exhaust gas emission --- fuel mixtures --- rapeseed oil methyl ester --- marine diesel oil --- fuel injection parameters --- ship propulsion system --- electric power generating system --- hybrid propulsion --- propulsion control --- LNG --- mission profile --- power take off/in --- pneumatic flexible shaft coupling --- pneumatic tuner of torsional oscillations --- torsional vibration --- semi-active vibroisolation --- constant twist angle control --- fan characteristics --- model-based control --- pneumatic bellows --- MCDM --- marine engine --- injection --- consumption --- method of characteristics --- one-dimensional numerical analysis --- single cylinder diesel engine --- mass flow rate --- intake and exhaust system --- methane slip --- methane oxidation catalyst --- natural gas --- n/a


Book
Marine Engines Performance and Emissions
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains a collection of peer-review scientific papers about marine engines’ performance and emissions. These papers were carefully selected for the “Marine Engines Performance and Emissions” Special Issue of the Journal of Marine Science and Engineering. Recent advancements in engine technology have allowed designers to reduce emissions and improve performance. Nevertheless, further efforts are needed to comply with the ever increased emission legislations. This book was conceived for people interested in marine engines. This information concerning recent developments may be helpful to academics, researchers, and professionals engaged in the field of marine engineering.

Keywords

CFD --- NOx --- engine --- ammonia --- water injection --- marine two-stroke diesel engine --- mean value engine model --- compressor model --- in-cylinder pressure trace --- model calibration --- marine propulsion system --- shaft generator --- power take-in --- power take-off --- energy efficiency design index --- energy efficiency operational indicator --- gradient vector optimization --- power converter --- torque oriented control --- scrubber --- EGCS --- emissions --- particles --- PM --- BC --- exhaust gases --- on board measurements --- reduction --- gaseous emissions --- biodiesel mixtures --- marine --- turbocharger --- bladed disc --- measurement --- laser --- simulation --- ships diesel engines --- exhaust gas emission --- fuel mixtures --- rapeseed oil methyl ester --- marine diesel oil --- fuel injection parameters --- ship propulsion system --- electric power generating system --- hybrid propulsion --- propulsion control --- LNG --- mission profile --- power take off/in --- pneumatic flexible shaft coupling --- pneumatic tuner of torsional oscillations --- torsional vibration --- semi-active vibroisolation --- constant twist angle control --- fan characteristics --- model-based control --- pneumatic bellows --- MCDM --- marine engine --- injection --- consumption --- method of characteristics --- one-dimensional numerical analysis --- single cylinder diesel engine --- mass flow rate --- intake and exhaust system --- methane slip --- methane oxidation catalyst --- natural gas --- n/a


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution


Book
Intelligent Transportation Related Complex Systems and Sensors
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data.

Keywords

Technology: general issues --- image dehazing --- traffic video dehazing --- dark channel prior --- spatial-temporal correlation --- contrast enhancement --- traffic signal control --- game theory --- decentralized control --- large-scale network control --- railway intrusion detection --- scene segmentation --- scene recognition --- adaptive feature extractor --- convolutional neural networks --- in-cylinder pressure identification --- speed iteration model --- EKF --- frequency modulation --- amplitude modulation --- sensor synchronization --- microscopic traffic data --- trajectory reconstruction --- expectation maximization --- vehicle matching --- artificial neural networks --- metro --- transportation --- user flow forecast --- matrix inversion --- time-varying matrix --- noise problem in time-varying matrix inversion --- recurrent neural network (RNN) --- RNN-based solver --- real-time fast computing --- real-time estimation --- probe vehicle --- traffic density --- neural network --- level of market penetration rate --- deep neural network --- neural artistic extraction --- objectification --- ride comfort --- subjective evaluation --- road surface recognition --- Gaussian background model --- abnormal road surface --- acceleration sensor --- traffic state prediction --- spatio-temporal traffic modeling --- simulation --- machine learning --- hyper parameter optimization --- ITS --- crash risk modeling --- hazardous materials --- highway safety --- operations research --- prescriptive analytics --- shortest path problem --- trucking --- vehicle routing problem --- data visualization --- descriptive analytics --- predictive analytics --- urban rail transit interior noise --- smartphone sensing --- XGBoost classifier --- railway maintenance --- vehicle trajectory prediction --- license plate data --- trip chain --- turning state transit --- route choice behavior --- real world experiment --- Intelligent Transportation Systems (ITS) --- advanced traveler information systems (ATIS) --- connected vehicles --- particle filter --- Kalman filter --- road safety --- travel time information system --- safety performance function --- bicycle sharing systems --- public transport systems --- data-driven classification of trips --- BSS underlying network --- trip index --- automatic rail-surface-scratch recognition and computation --- triangulation algorithm --- complete closed mesh model --- online rail-repair --- autonomous vehicle --- obstacle avoidance --- artificial potential field --- model predictive control --- human-like --- variable speed limits --- intelligent transportation systems --- ITS services --- driving simulator studies --- traffic modelling --- surrogate safety measures --- driving safety --- driving emotions --- driving stress --- lifestyle --- sensors --- heart rate --- plate scanning --- low-cost sensor --- sensor location problem --- traffic flow estimation --- image dehazing --- traffic video dehazing --- dark channel prior --- spatial-temporal correlation --- contrast enhancement --- traffic signal control --- game theory --- decentralized control --- large-scale network control --- railway intrusion detection --- scene segmentation --- scene recognition --- adaptive feature extractor --- convolutional neural networks --- in-cylinder pressure identification --- speed iteration model --- EKF --- frequency modulation --- amplitude modulation --- sensor synchronization --- microscopic traffic data --- trajectory reconstruction --- expectation maximization --- vehicle matching --- artificial neural networks --- metro --- transportation --- user flow forecast --- matrix inversion --- time-varying matrix --- noise problem in time-varying matrix inversion --- recurrent neural network (RNN) --- RNN-based solver --- real-time fast computing --- real-time estimation --- probe vehicle --- traffic density --- neural network --- level of market penetration rate --- deep neural network --- neural artistic extraction --- objectification --- ride comfort --- subjective evaluation --- road surface recognition --- Gaussian background model --- abnormal road surface --- acceleration sensor --- traffic state prediction --- spatio-temporal traffic modeling --- simulation --- machine learning --- hyper parameter optimization --- ITS --- crash risk modeling --- hazardous materials --- highway safety --- operations research --- prescriptive analytics --- shortest path problem --- trucking --- vehicle routing problem --- data visualization --- descriptive analytics --- predictive analytics --- urban rail transit interior noise --- smartphone sensing --- XGBoost classifier --- railway maintenance --- vehicle trajectory prediction --- license plate data --- trip chain --- turning state transit --- route choice behavior --- real world experiment --- Intelligent Transportation Systems (ITS) --- advanced traveler information systems (ATIS) --- connected vehicles --- particle filter --- Kalman filter --- road safety --- travel time information system --- safety performance function --- bicycle sharing systems --- public transport systems --- data-driven classification of trips --- BSS underlying network --- trip index --- automatic rail-surface-scratch recognition and computation --- triangulation algorithm --- complete closed mesh model --- online rail-repair --- autonomous vehicle --- obstacle avoidance --- artificial potential field --- model predictive control --- human-like --- variable speed limits --- intelligent transportation systems --- ITS services --- driving simulator studies --- traffic modelling --- surrogate safety measures --- driving safety --- driving emotions --- driving stress --- lifestyle --- sensors --- heart rate --- plate scanning --- low-cost sensor --- sensor location problem --- traffic flow estimation

Listing 1 - 10 of 12 << page
of 2
>>
Sort by