Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (3)

2020 (1)

Listing 1 - 4 of 4
Sort by

Book
Metal Plasticity and Fatigue at High Temperature
Authors: --- ---
ISBN: 3039287710 3039287702 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.


Book
Mechanical Properties in Progressive Mechanically Processed Metallic Materials
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demands on innovative materials given by the ever-increasing requirements of contemporary industry require the use of high-performance engineering materials. The properties of materials and alloys are a result of their structures, which can primarily be affected by the preparation/production process. However, the production of materials featuring high levels of the required properties without the necessity to use costly alloying elements or time- and money-demanding heat treatment technologies typically used to enhance the mechanical properties of metallic materials (especially specific strength) still remains a challenge. The introduction of thermomechanical treatment represented a breakthrough in grain refinement, consequently leading to significant improvement of the mechanical properties of metallic materials. Contrary to conventional production technologies, the main advantage of such treatment is the possibility to precisely control structural phenomena that affect the final mechanical and utility properties. Thermomechanical treatment can only decrease the grain size to the scale of microns. However, further research devoted to pushing materials’ performance beyond the limits led to the introduction of severe plastic deformation (SPD) methods providing producers with the ability to acquire ultra-fine-grained and nanoscaled metallic materials with superior mechanical properties. SPD methods can be performed with the help of conventional forming equipment; however, many newly designed processes have also been introduced.


Book
Mechanical Properties in Progressive Mechanically Processed Metallic Materials
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demands on innovative materials given by the ever-increasing requirements of contemporary industry require the use of high-performance engineering materials. The properties of materials and alloys are a result of their structures, which can primarily be affected by the preparation/production process. However, the production of materials featuring high levels of the required properties without the necessity to use costly alloying elements or time- and money-demanding heat treatment technologies typically used to enhance the mechanical properties of metallic materials (especially specific strength) still remains a challenge. The introduction of thermomechanical treatment represented a breakthrough in grain refinement, consequently leading to significant improvement of the mechanical properties of metallic materials. Contrary to conventional production technologies, the main advantage of such treatment is the possibility to precisely control structural phenomena that affect the final mechanical and utility properties. Thermomechanical treatment can only decrease the grain size to the scale of microns. However, further research devoted to pushing materials’ performance beyond the limits led to the introduction of severe plastic deformation (SPD) methods providing producers with the ability to acquire ultra-fine-grained and nanoscaled metallic materials with superior mechanical properties. SPD methods can be performed with the help of conventional forming equipment; however, many newly designed processes have also been introduced.

Keywords

History of engineering & technology --- crack nucleation --- fatigue --- plastic deformation --- surface topography --- high-entropy alloy --- powder metallurgy --- microstructure --- spring steel --- heat treatment --- retained austenite --- Mössbauer spectroscopy --- neutron diffraction --- tungsten heavy alloy --- rotary swaging --- finite element analysis --- deformation behaviour --- residual stress --- austenitic steel 08Ch18N10T --- cyclic plasticity --- cyclic hardening --- experiments --- finite element method --- low-cycle fatigue --- tungsten --- dislocations --- microstrain --- twist channel angular pressing --- severe plastic deformation --- mechanical properties --- disintegrator --- microscopy --- wear --- high energy milling --- cement --- sintering --- quenching --- abrasive waterjet --- machining --- traverse speed --- material structure --- material properties --- cutting force --- deformation force --- clad composite --- effective strain --- heat-resistant steel --- cast steel --- microalloying --- strengthening mechanism --- abrasive water jet cutting --- surface roughness --- hardness --- tensile strength --- functional properties --- metallic systems --- mechanical processing --- structural phenomena --- crack nucleation --- fatigue --- plastic deformation --- surface topography --- high-entropy alloy --- powder metallurgy --- microstructure --- spring steel --- heat treatment --- retained austenite --- Mössbauer spectroscopy --- neutron diffraction --- tungsten heavy alloy --- rotary swaging --- finite element analysis --- deformation behaviour --- residual stress --- austenitic steel 08Ch18N10T --- cyclic plasticity --- cyclic hardening --- experiments --- finite element method --- low-cycle fatigue --- tungsten --- dislocations --- microstrain --- twist channel angular pressing --- severe plastic deformation --- mechanical properties --- disintegrator --- microscopy --- wear --- high energy milling --- cement --- sintering --- quenching --- abrasive waterjet --- machining --- traverse speed --- material structure --- material properties --- cutting force --- deformation force --- clad composite --- effective strain --- heat-resistant steel --- cast steel --- microalloying --- strengthening mechanism --- abrasive water jet cutting --- surface roughness --- hardness --- tensile strength --- functional properties --- metallic systems --- mechanical processing --- structural phenomena


Book
Mechanical Properties in Progressive Mechanically Processed Metallic Materials
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demands on innovative materials given by the ever-increasing requirements of contemporary industry require the use of high-performance engineering materials. The properties of materials and alloys are a result of their structures, which can primarily be affected by the preparation/production process. However, the production of materials featuring high levels of the required properties without the necessity to use costly alloying elements or time- and money-demanding heat treatment technologies typically used to enhance the mechanical properties of metallic materials (especially specific strength) still remains a challenge. The introduction of thermomechanical treatment represented a breakthrough in grain refinement, consequently leading to significant improvement of the mechanical properties of metallic materials. Contrary to conventional production technologies, the main advantage of such treatment is the possibility to precisely control structural phenomena that affect the final mechanical and utility properties. Thermomechanical treatment can only decrease the grain size to the scale of microns. However, further research devoted to pushing materials’ performance beyond the limits led to the introduction of severe plastic deformation (SPD) methods providing producers with the ability to acquire ultra-fine-grained and nanoscaled metallic materials with superior mechanical properties. SPD methods can be performed with the help of conventional forming equipment; however, many newly designed processes have also been introduced.

Listing 1 - 4 of 4
Sort by