Narrow your search

Library

ULiège (12)

FARO (11)

KU Leuven (11)

LUCA School of Arts (11)

Odisee (11)

Thomas More Kempen (11)

Thomas More Mechelen (11)

UCLL (11)

ULB (11)

VIVES (11)

More...

Resource type

book (25)

dissertation (1)


Language

English (26)


Year
From To Submit

2024 (1)

2022 (7)

2021 (9)

2020 (7)

2019 (2)

Listing 1 - 10 of 26 << page
of 3
>>
Sort by

Book
Consideration of runouts by the evaluation of fatigue experiments
Author:
ISBN: 1000091208 3731509008 Year: 2019 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

In EC3, the fatigue life of a steel structure subjected to a cyclic load is estimated by its detail category. This category is based on the S-N, curves which are obtained by applying the Basquin model. Statistically, this model does not allow extrapolating the S-N curves in the HCF region, neither does it consider the runouts. This affects the fatigue life estimation when a structure bears loading in HCF. To overcome these deficiencies, a new method based on a Weibull distribution is applied.


Dissertation
Modelling Multi-Directional Cyclic Loading on Foundations for Offshore Wind Turbines
Authors: ---
Year: 2024 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The offshore wind energy sector is growing rapidly as a means to achieving target net zero GHG (Greenhouse gas) emission by 2050. This technology is been expanded to the offshore wind turbines (OWTs) both bottom-fixed and floating foundations. The foundations of such structures have to be optimized geometrically such that they are robust and resilient against environmental loads from wind, waves and currents which are usually cyclic, multidirectional and complex in nature.&#13;Accurate modelling of the foundation behavior for bottom-fixed and floating OWTs is critical in predicting the global response of the system. This aspect of the integrated design of the entire OWT system is not very much understood in design software programs, typically resulting in empirical modelling to represent the constitutive behavior of the foundation or, and in extreme cases, models that assume the foundation is infinitely rigid (fixed) in many structural and geotechnical engineering applications.&#13;The foundation modeling for OWTs requires considering accumulated rotational deformations due to combined cyclic and sustained loading, which affects the foundation stiffness. Additionally, it needs to account for the coupling of loads from different directions. Such effects have been rarely accounted for comprehensively with simple numerical models. &#13;But, there exists certain specialized models like the Houlsby-Abadie Ratcheting Model (HARM) strongly rooted in the kinematic hardening principles within the hyperplasticity (thermo-mechanical) framework, which enables capturing of the accumulated deformations over many cycles (typically millions) of cyclic loadings. Then, there is the REDWIN model which is an acronym referring to “REDucing cost in offshore WINd by integrated structural and geotechnical design”, and it account for the multidirectional load coupling.&#13;This research focuses on programming, improving, and developing a novel constitutive model called CLAP an acronym for “Cyclic Loading & Analysis of Piles”. The output of this work can be further enhanced and used for various applications and case studies on complex multidirectional cyclic loading in the offshore industry.


Book
Fatigue and Fracture Behaviour of Additively Manufactured Mechanical Components
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advent of additive manufacturing (AM) processes applied to the fabrication of structural components creates the need for design methodologies supporting structural optimization approaches that take into account the specific characteristics of the process. While AM processes enable unprecedented geometrical design freedom, which can result in significant reductions of component weight, on the other hand they have implications in the fatigue and fracture strength due to residual stresses and microstructural features. This is linked to stress concentration effects and anisotropy that still warrant further research. This Special Issue of Applied Sciences brings together papers investigating the features of AM processes relevant to the mechanical behavior of AM structural components, particularly, but not exclusively, from the viewpoints of fatigue and fracture behavior. Although the focus of the issue is on AM problems related to fatigue and fracture, articles dealing with other manufacturing processes with related problems are also be included.

Keywords

History of engineering & technology --- milling process --- part functionality --- surface integrity --- research progress --- non-proportional mixed mode loading --- fractography --- mode II stress intensity factor --- finite element analysis --- rail steel --- wheel steel --- monolithic zirconia crown --- dental implant abutment --- cyclic loading --- mode III stress intensity factor --- FEA --- adaptive control --- fatigue testing --- simply supported bending --- mini specimen --- additive manufacturing --- 304L stainless steel --- LCF --- crack propagation --- blade-disc-Franc3D --- mixed-mode cracking --- fatigue life improvement --- materials characterization --- ultrasonic impact treatment --- DMLS --- fatigue --- fracture --- finite element method (FEM) --- milling process --- part functionality --- surface integrity --- research progress --- non-proportional mixed mode loading --- fractography --- mode II stress intensity factor --- finite element analysis --- rail steel --- wheel steel --- monolithic zirconia crown --- dental implant abutment --- cyclic loading --- mode III stress intensity factor --- FEA --- adaptive control --- fatigue testing --- simply supported bending --- mini specimen --- additive manufacturing --- 304L stainless steel --- LCF --- crack propagation --- blade-disc-Franc3D --- mixed-mode cracking --- fatigue life improvement --- materials characterization --- ultrasonic impact treatment --- DMLS --- fatigue --- fracture --- finite element method (FEM)


Book
Fatigue and Fracture Behaviour of Additively Manufactured Mechanical Components
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advent of additive manufacturing (AM) processes applied to the fabrication of structural components creates the need for design methodologies supporting structural optimization approaches that take into account the specific characteristics of the process. While AM processes enable unprecedented geometrical design freedom, which can result in significant reductions of component weight, on the other hand they have implications in the fatigue and fracture strength due to residual stresses and microstructural features. This is linked to stress concentration effects and anisotropy that still warrant further research. This Special Issue of Applied Sciences brings together papers investigating the features of AM processes relevant to the mechanical behavior of AM structural components, particularly, but not exclusively, from the viewpoints of fatigue and fracture behavior. Although the focus of the issue is on AM problems related to fatigue and fracture, articles dealing with other manufacturing processes with related problems are also be included.


Book
Fatigue and Fracture Behaviour of Additively Manufactured Mechanical Components
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advent of additive manufacturing (AM) processes applied to the fabrication of structural components creates the need for design methodologies supporting structural optimization approaches that take into account the specific characteristics of the process. While AM processes enable unprecedented geometrical design freedom, which can result in significant reductions of component weight, on the other hand they have implications in the fatigue and fracture strength due to residual stresses and microstructural features. This is linked to stress concentration effects and anisotropy that still warrant further research. This Special Issue of Applied Sciences brings together papers investigating the features of AM processes relevant to the mechanical behavior of AM structural components, particularly, but not exclusively, from the viewpoints of fatigue and fracture behavior. Although the focus of the issue is on AM problems related to fatigue and fracture, articles dealing with other manufacturing processes with related problems are also be included.


Book
Advances in the Processing and Application of Polymer and Its Composites
Authors: --- --- --- ---
ISBN: 3036554149 3036554130 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book mainly focuses on the processing and applications of polymer and its composites. With the fast development of the petroleum industry, polymer materials have been widely utilized in our daily lives. The various processing methods of polymers determine the final properties and performance of products. In addition, the introduction of different fillers, including inorganic fillers, metal oxide, natural fibers, and so on, can increase the physical and chemical properties of polymer composites, which will further broaden their practical applications. Special attention will be paid to the type of processing methods and the functional fillers on the performance of polymer composites.


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization


Book
Architectural Structure
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue, “Architectural Structure,” aims to gather general advances in human-made constructions which simultaneously are driven by aesthetic and structural engineering considerations. This Special Issue brings together twelve contributions covering the following topics: analysis of architectural typologies; the study of the mechanical performance of structural materials, structural systems and components; and the proposal of techniques to evaluate the mechanical performance in existing structures and new construction techniques.

Keywords

History of engineering & technology --- recycled aggregate concrete --- block masonry --- compressive strength --- carbon emission --- stress–strain curves --- outrigger wall --- multiple openings --- deep beam --- stiffness --- shear strength --- tall building --- inverted multi tee --- prestressed concrete --- precast concrete --- structural performance --- flexural analysis --- self-compacting concrete --- non-destructive test methods --- ultrasonic pulse velocity test --- surface hardness test --- pull-out test --- maturity test --- within-test variability --- normal vibrated concrete --- concrete structures --- beams &amp --- girders --- torsion --- high-strength concrete --- prestressing --- traditional slabs --- ceramic-reinforced slabs --- shear response --- cyclic loading --- natural fiber-reinforced polymers --- NFRP --- computational design --- tailored fiber placement --- coreless filament winding --- rapid prototyping --- industry 4.0 --- lightweight structure --- Geopolymer --- Alkali activated --- tensile strength --- deformability --- experimental study --- analytical model --- reinforced concrete --- beams --- fly ash alkali activated --- bending --- thin-walled I-section --- continuous beam --- local buckling --- longitudinal stress variation --- design ultimate resistance of the cross-section --- Rudolf Steiner --- anthroposophy --- architecture --- Goetheanum --- double-steel-concrete composite shear walls --- axial and bending capacity --- failure characteristic --- n/a --- stress-strain curves


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.


Book
Architectural Structure
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue, “Architectural Structure,” aims to gather general advances in human-made constructions which simultaneously are driven by aesthetic and structural engineering considerations. This Special Issue brings together twelve contributions covering the following topics: analysis of architectural typologies; the study of the mechanical performance of structural materials, structural systems and components; and the proposal of techniques to evaluate the mechanical performance in existing structures and new construction techniques.

Keywords

recycled aggregate concrete --- block masonry --- compressive strength --- carbon emission --- stress–strain curves --- outrigger wall --- multiple openings --- deep beam --- stiffness --- shear strength --- tall building --- inverted multi tee --- prestressed concrete --- precast concrete --- structural performance --- flexural analysis --- self-compacting concrete --- non-destructive test methods --- ultrasonic pulse velocity test --- surface hardness test --- pull-out test --- maturity test --- within-test variability --- normal vibrated concrete --- concrete structures --- beams &amp --- girders --- torsion --- high-strength concrete --- prestressing --- traditional slabs --- ceramic-reinforced slabs --- shear response --- cyclic loading --- natural fiber-reinforced polymers --- NFRP --- computational design --- tailored fiber placement --- coreless filament winding --- rapid prototyping --- industry 4.0 --- lightweight structure --- Geopolymer --- Alkali activated --- tensile strength --- deformability --- experimental study --- analytical model --- reinforced concrete --- beams --- fly ash alkali activated --- bending --- thin-walled I-section --- continuous beam --- local buckling --- longitudinal stress variation --- design ultimate resistance of the cross-section --- Rudolf Steiner --- anthroposophy --- architecture --- Goetheanum --- double-steel-concrete composite shear walls --- axial and bending capacity --- failure characteristic --- n/a --- stress-strain curves

Listing 1 - 10 of 26 << page
of 3
>>
Sort by