Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (1)

2021 (3)

Listing 1 - 4 of 4
Sort by

Book
Artificial Neural Networks in Agriculture
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- artificial neural network (ANN) --- Grain weevil identification --- neural modelling classification --- winter wheat --- grain --- artificial neural network --- ferulic acid --- deoxynivalenol --- nivalenol --- MLP network --- sensitivity analysis --- precision agriculture --- machine learning --- similarity --- metric --- memory --- deep learning --- plant growth --- dynamic response --- root zone temperature --- dynamic model --- NARX neural networks --- hydroponics --- vegetation indices --- UAV --- neural network --- corn plant density --- corn canopy cover --- yield prediction --- CLQ --- GA-BPNN --- GPP-driven spectral model --- rice phenology --- EBK --- correlation filter --- crop yield prediction --- hybrid feature extraction --- recursive feature elimination wrapper --- artificial neural networks --- big data --- classification --- high-throughput phenotyping --- modeling --- predicting --- time series forecasting --- soybean --- food production --- paddy rice mapping --- dynamic time warping --- LSTM --- weakly supervised learning --- cropland mapping --- apparent soil electrical conductivity (ECa) --- magnetic susceptibility (MS) --- EM38 --- neural networks --- Phoenix dactylifera L. --- Medjool dates --- image classification --- convolutional neural networks --- transfer learning --- average degree of coverage --- coverage unevenness coefficient --- optimization --- high-resolution imagery --- oil palm tree --- CNN --- Faster-RCNN --- image identification --- agroecology --- weeds --- yield gap --- environment --- health --- crop models --- soil and plant nutrition --- automated harvesting --- model application for sustainable agriculture --- remote sensing for agriculture --- decision supporting systems --- neural image analysis --- artificial neural network (ANN) --- Grain weevil identification --- neural modelling classification --- winter wheat --- grain --- artificial neural network --- ferulic acid --- deoxynivalenol --- nivalenol --- MLP network --- sensitivity analysis --- precision agriculture --- machine learning --- similarity --- metric --- memory --- deep learning --- plant growth --- dynamic response --- root zone temperature --- dynamic model --- NARX neural networks --- hydroponics --- vegetation indices --- UAV --- neural network --- corn plant density --- corn canopy cover --- yield prediction --- CLQ --- GA-BPNN --- GPP-driven spectral model --- rice phenology --- EBK --- correlation filter --- crop yield prediction --- hybrid feature extraction --- recursive feature elimination wrapper --- artificial neural networks --- big data --- classification --- high-throughput phenotyping --- modeling --- predicting --- time series forecasting --- soybean --- food production --- paddy rice mapping --- dynamic time warping --- LSTM --- weakly supervised learning --- cropland mapping --- apparent soil electrical conductivity (ECa) --- magnetic susceptibility (MS) --- EM38 --- neural networks --- Phoenix dactylifera L. --- Medjool dates --- image classification --- convolutional neural networks --- transfer learning --- average degree of coverage --- coverage unevenness coefficient --- optimization --- high-resolution imagery --- oil palm tree --- CNN --- Faster-RCNN --- image identification --- agroecology --- weeds --- yield gap --- environment --- health --- crop models --- soil and plant nutrition --- automated harvesting --- model application for sustainable agriculture --- remote sensing for agriculture --- decision supporting systems --- neural image analysis


Book
Remote Sensing in Agriculture: State-of-the-Art
Authors: --- ---
ISBN: 303655484X 3036554831 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- feature selection --- spectral angle mapper --- support vector machine --- support vector regression --- hyperspectral imaging --- UAV --- cross-scale --- yellow rust --- spatial resolution --- winter wheat --- MODIS --- northern Mongolia --- remote sensing indices --- spring wheat --- yield estimation --- UAV-based LiDAR --- biomass --- crop height --- field phenotyping --- oasis crop type mapping --- Sentinel-1 and 2 integration --- statistically homogeneous pixels (SHPs) --- red-edge spectral bands and indices --- recursive feature increment (RFI) --- random forest (RF) --- unmanned aerial vehicles (UAVs) --- remote sensing (RS) --- thermal UAV RS --- thermal infrared (TIR) --- precision agriculture (PA) --- crop water stress monitoring --- plant disease detection --- vegetation status monitoring --- Landsat --- data blending --- crop yield prediction --- gap-filling --- volumetric soil moisture --- synthetic aperture radar (SAR) --- Sentinel-1 --- soil moisture semi-empirical model --- soil moisture Karnataka India --- reflectance --- digital number (DN) --- vegetation index (VI) --- Parrot Sequoia (Sequoia) --- DJI Phantom 4 Multispectral (P4M) --- Synthetic Aperture Radar --- SAR --- lodging --- Hidden Markov Random Field --- HMRF --- CDL --- corn --- soybean --- crop Monitoring --- crop management --- apple orchard damage --- polarimetric decomposition --- entropy --- anisotropy --- alpha angle --- storm damage mapping --- economic loss --- insurance support


Book
Artificial Neural Networks in Agriculture
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- artificial neural network (ANN) --- Grain weevil identification --- neural modelling classification --- winter wheat --- grain --- artificial neural network --- ferulic acid --- deoxynivalenol --- nivalenol --- MLP network --- sensitivity analysis --- precision agriculture --- machine learning --- similarity --- metric --- memory --- deep learning --- plant growth --- dynamic response --- root zone temperature --- dynamic model --- NARX neural networks --- hydroponics --- vegetation indices --- UAV --- neural network --- corn plant density --- corn canopy cover --- yield prediction --- CLQ --- GA-BPNN --- GPP-driven spectral model --- rice phenology --- EBK --- correlation filter --- crop yield prediction --- hybrid feature extraction --- recursive feature elimination wrapper --- artificial neural networks --- big data --- classification --- high-throughput phenotyping --- modeling --- predicting --- time series forecasting --- soybean --- food production --- paddy rice mapping --- dynamic time warping --- LSTM --- weakly supervised learning --- cropland mapping --- apparent soil electrical conductivity (ECa) --- magnetic susceptibility (MS) --- EM38 --- neural networks --- Phoenix dactylifera L. --- Medjool dates --- image classification --- convolutional neural networks --- transfer learning --- average degree of coverage --- coverage unevenness coefficient --- optimization --- high-resolution imagery --- oil palm tree --- CNN --- Faster-RCNN --- image identification --- agroecology --- weeds --- yield gap --- environment --- health --- crop models --- soil and plant nutrition --- automated harvesting --- model application for sustainable agriculture --- remote sensing for agriculture --- decision supporting systems --- neural image analysis


Book
Artificial Neural Networks in Agriculture
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible.

Keywords

artificial neural network (ANN) --- Grain weevil identification --- neural modelling classification --- winter wheat --- grain --- artificial neural network --- ferulic acid --- deoxynivalenol --- nivalenol --- MLP network --- sensitivity analysis --- precision agriculture --- machine learning --- similarity --- metric --- memory --- deep learning --- plant growth --- dynamic response --- root zone temperature --- dynamic model --- NARX neural networks --- hydroponics --- vegetation indices --- UAV --- neural network --- corn plant density --- corn canopy cover --- yield prediction --- CLQ --- GA-BPNN --- GPP-driven spectral model --- rice phenology --- EBK --- correlation filter --- crop yield prediction --- hybrid feature extraction --- recursive feature elimination wrapper --- artificial neural networks --- big data --- classification --- high-throughput phenotyping --- modeling --- predicting --- time series forecasting --- soybean --- food production --- paddy rice mapping --- dynamic time warping --- LSTM --- weakly supervised learning --- cropland mapping --- apparent soil electrical conductivity (ECa) --- magnetic susceptibility (MS) --- EM38 --- neural networks --- Phoenix dactylifera L. --- Medjool dates --- image classification --- convolutional neural networks --- transfer learning --- average degree of coverage --- coverage unevenness coefficient --- optimization --- high-resolution imagery --- oil palm tree --- CNN --- Faster-RCNN --- image identification --- agroecology --- weeds --- yield gap --- environment --- health --- crop models --- soil and plant nutrition --- automated harvesting --- model application for sustainable agriculture --- remote sensing for agriculture --- decision supporting systems --- neural image analysis

Listing 1 - 4 of 4
Sort by