Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Optical Sensors for Structural Health Monitoring
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The evolution and need for the preservation and maintenance of existing structures, recent or historical, has fostered research in the area of structural monitoring, translated into the development of new techniques, equipment and sensors. Early detection of damage and accurate assessment of structural safety requires monitoring systems, the data from which can be used to calibrate numerical models for structural analysis and to assess safety. Data are obtained under real-time conditions, considering a group of parameters related to structural properties, such as stresses, accelerations, deformations and displacements. The analysis of structural properties is particularly relevant when the structure is subjected to extreme events (earthquakes, wind, fire and explosions, among others) or repeated loads (road/rail/air traffic, vibrations induced by equipment and machines), since they affect the structural integrity and put the users at risk. In order to prevent the severe damage and eventual collapse of structures, and consequent human, material and economic losses, the implementation of monitoring systems becomes a valuable tool for today's society. Monitoring of structures is becoming increasingly important, not only as preventive action, but also due to actual economic and sustainability concerns, to ensure a safer and more comfortable built environment.

Keywords

History of engineering & technology --- image-based measurement --- crack measurement --- shear cracks --- flexural cracks --- damage index --- nuclear power plant --- visual inspection --- photometric stereo --- 3D reconstruction --- rotating stall --- non-synchronous blade vibration --- blade tip timing --- centrifugal compressor --- distributed measurements --- fiber optic sensors --- scour --- soil-structure interaction --- winkler model --- equivalent length --- corrosion sensor --- oil and gas pipelines --- optical fibers --- Fiber Bragg Grating (FBG) --- distributed optical fiber strain sensing cable --- Brillouin scattering --- Rayleigh scattering --- strain sensing cable characterization --- elasto-plastic behavior --- strain sensitivity coefficients --- bridge damage detection --- fiber optic gyroscope --- deep learning --- convolutional neural network --- Fiber Bragg grating --- fiber optic sensors embedded in concrete --- strain measurement --- monitoring --- cracking --- weldable fiber optic sensors --- optical fiber sensors --- material extrusion --- hybrid processes --- temperature and strain monitoring --- similarity measure --- subway tunnel --- distributed vibration --- feature extraction --- autoencoder --- ultra-weak FBG --- hyperspectral imaging --- spectral indices --- random forest --- growth stage --- Fusarium head blight --- structural health monitoring --- load localization --- load estimation --- depth sensor --- artificial neural networks --- castigliano’s theorem --- crack detection --- crack opening --- distributed fiber optic sensors --- DIC --- UHPFRC --- testing --- SHM --- microcracking --- PAD --- environmental monitoring --- colorimetric detection --- water --- atmosphere --- image-based measurement --- crack measurement --- shear cracks --- flexural cracks --- damage index --- nuclear power plant --- visual inspection --- photometric stereo --- 3D reconstruction --- rotating stall --- non-synchronous blade vibration --- blade tip timing --- centrifugal compressor --- distributed measurements --- fiber optic sensors --- scour --- soil-structure interaction --- winkler model --- equivalent length --- corrosion sensor --- oil and gas pipelines --- optical fibers --- Fiber Bragg Grating (FBG) --- distributed optical fiber strain sensing cable --- Brillouin scattering --- Rayleigh scattering --- strain sensing cable characterization --- elasto-plastic behavior --- strain sensitivity coefficients --- bridge damage detection --- fiber optic gyroscope --- deep learning --- convolutional neural network --- Fiber Bragg grating --- fiber optic sensors embedded in concrete --- strain measurement --- monitoring --- cracking --- weldable fiber optic sensors --- optical fiber sensors --- material extrusion --- hybrid processes --- temperature and strain monitoring --- similarity measure --- subway tunnel --- distributed vibration --- feature extraction --- autoencoder --- ultra-weak FBG --- hyperspectral imaging --- spectral indices --- random forest --- growth stage --- Fusarium head blight --- structural health monitoring --- load localization --- load estimation --- depth sensor --- artificial neural networks --- castigliano’s theorem --- crack detection --- crack opening --- distributed fiber optic sensors --- DIC --- UHPFRC --- testing --- SHM --- microcracking --- PAD --- environmental monitoring --- colorimetric detection --- water --- atmosphere


Book
Optical Sensors for Structural Health Monitoring
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The evolution and need for the preservation and maintenance of existing structures, recent or historical, has fostered research in the area of structural monitoring, translated into the development of new techniques, equipment and sensors. Early detection of damage and accurate assessment of structural safety requires monitoring systems, the data from which can be used to calibrate numerical models for structural analysis and to assess safety. Data are obtained under real-time conditions, considering a group of parameters related to structural properties, such as stresses, accelerations, deformations and displacements. The analysis of structural properties is particularly relevant when the structure is subjected to extreme events (earthquakes, wind, fire and explosions, among others) or repeated loads (road/rail/air traffic, vibrations induced by equipment and machines), since they affect the structural integrity and put the users at risk. In order to prevent the severe damage and eventual collapse of structures, and consequent human, material and economic losses, the implementation of monitoring systems becomes a valuable tool for today's society. Monitoring of structures is becoming increasingly important, not only as preventive action, but also due to actual economic and sustainability concerns, to ensure a safer and more comfortable built environment.

Keywords

History of engineering & technology --- image-based measurement --- crack measurement --- shear cracks --- flexural cracks --- damage index --- nuclear power plant --- visual inspection --- photometric stereo --- 3D reconstruction --- rotating stall --- non-synchronous blade vibration --- blade tip timing --- centrifugal compressor --- distributed measurements --- fiber optic sensors --- scour --- soil-structure interaction --- winkler model --- equivalent length --- corrosion sensor --- oil and gas pipelines --- optical fibers --- Fiber Bragg Grating (FBG) --- distributed optical fiber strain sensing cable --- Brillouin scattering --- Rayleigh scattering --- strain sensing cable characterization --- elasto-plastic behavior --- strain sensitivity coefficients --- bridge damage detection --- fiber optic gyroscope --- deep learning --- convolutional neural network --- Fiber Bragg grating --- fiber optic sensors embedded in concrete --- strain measurement --- monitoring --- cracking --- weldable fiber optic sensors --- optical fiber sensors --- material extrusion --- hybrid processes --- temperature and strain monitoring --- similarity measure --- subway tunnel --- distributed vibration --- feature extraction --- autoencoder --- ultra-weak FBG --- hyperspectral imaging --- spectral indices --- random forest --- growth stage --- Fusarium head blight --- structural health monitoring --- load localization --- load estimation --- depth sensor --- artificial neural networks --- castigliano’s theorem --- crack detection --- crack opening --- distributed fiber optic sensors --- DIC --- UHPFRC --- testing --- SHM --- microcracking --- PAD --- environmental monitoring --- colorimetric detection --- water --- atmosphere


Book
Optical Sensors for Structural Health Monitoring
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The evolution and need for the preservation and maintenance of existing structures, recent or historical, has fostered research in the area of structural monitoring, translated into the development of new techniques, equipment and sensors. Early detection of damage and accurate assessment of structural safety requires monitoring systems, the data from which can be used to calibrate numerical models for structural analysis and to assess safety. Data are obtained under real-time conditions, considering a group of parameters related to structural properties, such as stresses, accelerations, deformations and displacements. The analysis of structural properties is particularly relevant when the structure is subjected to extreme events (earthquakes, wind, fire and explosions, among others) or repeated loads (road/rail/air traffic, vibrations induced by equipment and machines), since they affect the structural integrity and put the users at risk. In order to prevent the severe damage and eventual collapse of structures, and consequent human, material and economic losses, the implementation of monitoring systems becomes a valuable tool for today's society. Monitoring of structures is becoming increasingly important, not only as preventive action, but also due to actual economic and sustainability concerns, to ensure a safer and more comfortable built environment.

Keywords

image-based measurement --- crack measurement --- shear cracks --- flexural cracks --- damage index --- nuclear power plant --- visual inspection --- photometric stereo --- 3D reconstruction --- rotating stall --- non-synchronous blade vibration --- blade tip timing --- centrifugal compressor --- distributed measurements --- fiber optic sensors --- scour --- soil-structure interaction --- winkler model --- equivalent length --- corrosion sensor --- oil and gas pipelines --- optical fibers --- Fiber Bragg Grating (FBG) --- distributed optical fiber strain sensing cable --- Brillouin scattering --- Rayleigh scattering --- strain sensing cable characterization --- elasto-plastic behavior --- strain sensitivity coefficients --- bridge damage detection --- fiber optic gyroscope --- deep learning --- convolutional neural network --- Fiber Bragg grating --- fiber optic sensors embedded in concrete --- strain measurement --- monitoring --- cracking --- weldable fiber optic sensors --- optical fiber sensors --- material extrusion --- hybrid processes --- temperature and strain monitoring --- similarity measure --- subway tunnel --- distributed vibration --- feature extraction --- autoencoder --- ultra-weak FBG --- hyperspectral imaging --- spectral indices --- random forest --- growth stage --- Fusarium head blight --- structural health monitoring --- load localization --- load estimation --- depth sensor --- artificial neural networks --- castigliano’s theorem --- crack detection --- crack opening --- distributed fiber optic sensors --- DIC --- UHPFRC --- testing --- SHM --- microcracking --- PAD --- environmental monitoring --- colorimetric detection --- water --- atmosphere


Book
Design of Alloy Metals for Low-Mass Structures
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.

Keywords

History of engineering & technology --- Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q&amp --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer --- Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q&amp --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer


Book
Design of Alloy Metals for Low-Mass Structures
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.

Keywords

History of engineering & technology --- Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q&amp --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer


Book
Design of Alloy Metals for Low-Mass Structures
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.

Keywords

Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q&amp --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer

Listing 1 - 6 of 6
Sort by