Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The word "cancer" is associated with at least 100 different pathologies, depending on the organ involved and the type of tumor developed. Cancer is a complex disease involving multiple pathogenetic mechanisms. Characterization of different types of cancers, which distinguishes them from healthy cells and other cancers, allows for the identification of specific targets for each individual tumor. The principle of chemotherapy is based on interference with the mechanisms that regulate the life and proliferation of cancer cells, causing their death. In recent years, there has been continuous progress in the development of therapeutic agents against cancer, which is ongoing.The Anticancer Inhibitors Special Issue focuses on new target-based anticancer agents that inhibit a specific target involved in the suppression of various types of cancer and the control of their chemoresistance.There is a collection of research and review articles on advances in drug discovery, design, and development of new inhibitor compounds with potency against various cancer types.
Research & information: general --- Chemistry --- breast cancer --- tamoxifen --- LY294002 --- synergism --- apoptosis --- cell cycle --- tea (Camellia sinensis) flowers --- BTFS --- A2780/CP70 ovarian cancer cells --- S phase cell cycle arrest --- nicotinamide phosphoribosyltransferase --- NAD+ biosynthesis --- inhibitor --- azacyclohexane --- anticancer drug --- drug design --- enthalpy effect --- NSCLC --- Cathepsin K --- cell proliferation --- cell migration --- cell invasion --- mTOR --- isatin-hydrazones --- cytotoxicity --- CDK2 inhibitor --- ATP competitive inhibitor --- ADME analysis --- receptor tyrosine kinases --- protein-protein interactions --- protein engineering --- directed evolution --- angiogenesis --- binding affinity --- agonistic activity --- saponins --- phytochemicals --- tea (Camellia sinensis) flower --- ovarian cancer --- autophagy --- ZMYND8 --- tumorigenesis --- epigenetic regulation --- pro-oncogenic effects --- tumor suppression --- tacrine-coumarin derivatives --- DNA --- topoisomerases I, II --- lung carcinoma cells --- A549 --- chemotherapy --- prodrug --- drug targeting --- overexpressed enzymes --- ADC --- ADEPT --- GDEPT --- LEAPT --- PROTAC --- cyclin-dependent kinase --- cancer --- resistance --- small molecule inhibitors --- PROTACs --- statins --- pancreatic cancer --- DNA microarray --- pitavastatin --- cerivastatin --- simvastatin --- fluvastatin --- atorvastatin --- pravastatin --- HMG-CoA reductase inhibitors --- n/a
Choose an application
The word "cancer" is associated with at least 100 different pathologies, depending on the organ involved and the type of tumor developed. Cancer is a complex disease involving multiple pathogenetic mechanisms. Characterization of different types of cancers, which distinguishes them from healthy cells and other cancers, allows for the identification of specific targets for each individual tumor. The principle of chemotherapy is based on interference with the mechanisms that regulate the life and proliferation of cancer cells, causing their death. In recent years, there has been continuous progress in the development of therapeutic agents against cancer, which is ongoing.The Anticancer Inhibitors Special Issue focuses on new target-based anticancer agents that inhibit a specific target involved in the suppression of various types of cancer and the control of their chemoresistance.There is a collection of research and review articles on advances in drug discovery, design, and development of new inhibitor compounds with potency against various cancer types.
breast cancer --- tamoxifen --- LY294002 --- synergism --- apoptosis --- cell cycle --- tea (Camellia sinensis) flowers --- BTFS --- A2780/CP70 ovarian cancer cells --- S phase cell cycle arrest --- nicotinamide phosphoribosyltransferase --- NAD+ biosynthesis --- inhibitor --- azacyclohexane --- anticancer drug --- drug design --- enthalpy effect --- NSCLC --- Cathepsin K --- cell proliferation --- cell migration --- cell invasion --- mTOR --- isatin-hydrazones --- cytotoxicity --- CDK2 inhibitor --- ATP competitive inhibitor --- ADME analysis --- receptor tyrosine kinases --- protein-protein interactions --- protein engineering --- directed evolution --- angiogenesis --- binding affinity --- agonistic activity --- saponins --- phytochemicals --- tea (Camellia sinensis) flower --- ovarian cancer --- autophagy --- ZMYND8 --- tumorigenesis --- epigenetic regulation --- pro-oncogenic effects --- tumor suppression --- tacrine-coumarin derivatives --- DNA --- topoisomerases I, II --- lung carcinoma cells --- A549 --- chemotherapy --- prodrug --- drug targeting --- overexpressed enzymes --- ADC --- ADEPT --- GDEPT --- LEAPT --- PROTAC --- cyclin-dependent kinase --- cancer --- resistance --- small molecule inhibitors --- PROTACs --- statins --- pancreatic cancer --- DNA microarray --- pitavastatin --- cerivastatin --- simvastatin --- fluvastatin --- atorvastatin --- pravastatin --- HMG-CoA reductase inhibitors --- n/a
Choose an application
The word "cancer" is associated with at least 100 different pathologies, depending on the organ involved and the type of tumor developed. Cancer is a complex disease involving multiple pathogenetic mechanisms. Characterization of different types of cancers, which distinguishes them from healthy cells and other cancers, allows for the identification of specific targets for each individual tumor. The principle of chemotherapy is based on interference with the mechanisms that regulate the life and proliferation of cancer cells, causing their death. In recent years, there has been continuous progress in the development of therapeutic agents against cancer, which is ongoing.The Anticancer Inhibitors Special Issue focuses on new target-based anticancer agents that inhibit a specific target involved in the suppression of various types of cancer and the control of their chemoresistance.There is a collection of research and review articles on advances in drug discovery, design, and development of new inhibitor compounds with potency against various cancer types.
Research & information: general --- Chemistry --- breast cancer --- tamoxifen --- LY294002 --- synergism --- apoptosis --- cell cycle --- tea (Camellia sinensis) flowers --- BTFS --- A2780/CP70 ovarian cancer cells --- S phase cell cycle arrest --- nicotinamide phosphoribosyltransferase --- NAD+ biosynthesis --- inhibitor --- azacyclohexane --- anticancer drug --- drug design --- enthalpy effect --- NSCLC --- Cathepsin K --- cell proliferation --- cell migration --- cell invasion --- mTOR --- isatin-hydrazones --- cytotoxicity --- CDK2 inhibitor --- ATP competitive inhibitor --- ADME analysis --- receptor tyrosine kinases --- protein-protein interactions --- protein engineering --- directed evolution --- angiogenesis --- binding affinity --- agonistic activity --- saponins --- phytochemicals --- tea (Camellia sinensis) flower --- ovarian cancer --- autophagy --- ZMYND8 --- tumorigenesis --- epigenetic regulation --- pro-oncogenic effects --- tumor suppression --- tacrine-coumarin derivatives --- DNA --- topoisomerases I, II --- lung carcinoma cells --- A549 --- chemotherapy --- prodrug --- drug targeting --- overexpressed enzymes --- ADC --- ADEPT --- GDEPT --- LEAPT --- PROTAC --- cyclin-dependent kinase --- cancer --- resistance --- small molecule inhibitors --- PROTACs --- statins --- pancreatic cancer --- DNA microarray --- pitavastatin --- cerivastatin --- simvastatin --- fluvastatin --- atorvastatin --- pravastatin --- HMG-CoA reductase inhibitors --- breast cancer --- tamoxifen --- LY294002 --- synergism --- apoptosis --- cell cycle --- tea (Camellia sinensis) flowers --- BTFS --- A2780/CP70 ovarian cancer cells --- S phase cell cycle arrest --- nicotinamide phosphoribosyltransferase --- NAD+ biosynthesis --- inhibitor --- azacyclohexane --- anticancer drug --- drug design --- enthalpy effect --- NSCLC --- Cathepsin K --- cell proliferation --- cell migration --- cell invasion --- mTOR --- isatin-hydrazones --- cytotoxicity --- CDK2 inhibitor --- ATP competitive inhibitor --- ADME analysis --- receptor tyrosine kinases --- protein-protein interactions --- protein engineering --- directed evolution --- angiogenesis --- binding affinity --- agonistic activity --- saponins --- phytochemicals --- tea (Camellia sinensis) flower --- ovarian cancer --- autophagy --- ZMYND8 --- tumorigenesis --- epigenetic regulation --- pro-oncogenic effects --- tumor suppression --- tacrine-coumarin derivatives --- DNA --- topoisomerases I, II --- lung carcinoma cells --- A549 --- chemotherapy --- prodrug --- drug targeting --- overexpressed enzymes --- ADC --- ADEPT --- GDEPT --- LEAPT --- PROTAC --- cyclin-dependent kinase --- cancer --- resistance --- small molecule inhibitors --- PROTACs --- statins --- pancreatic cancer --- DNA microarray --- pitavastatin --- cerivastatin --- simvastatin --- fluvastatin --- atorvastatin --- pravastatin --- HMG-CoA reductase inhibitors
Choose an application
Viruses in the Parvoviridae family constitute one of the most diverse and intriguing fields of research. While they all share an ssDNA genome and a small capsid, they can differ widely in structure, genome organization and expression, virus–cell interaction, and impact on the host. Exploring such diversity and unraveling the inherent complexity in these apparently simple viruses is an ongoing endeavor and commitment for the scientific community. The translational implications of research on parvoviruses are relevant. Within the family, some viruses are important human and veterinary pathogens, in need of diagnostic methods and antiviral strategies; other viruses have long been studied and engineered as tools for oncolytic therapy, or as sophisticated gene delivery vectors, and can now display their wide and expanding applicative potential. This Special Issue of Viruses collects recent contributions in the field of parvovirus research, with a focus on new insights and research on unresolved issues, as well as new approaches exploiting systemic methodologies. Evolution, structural biology, viral replication, virus–host interaction, pathogenesis and immunity, and viral oncotherapy are a selection of the topics addressed in the issue that can be of relevance to the community involved in parvovirus research and of interest to a wider audience.
antivirals --- Bombyx mori bidensovirus --- Bocaparvovirus --- human bocavirus 1 --- equine parvovirus-hepatitis --- NS2 --- NS1 --- X-ray crystallography --- BIRC3 (cIAP-2) --- glycans --- children --- antibody interactions --- new viruses --- alpaca --- cidofovir --- rodent protoparvoviruses --- clinical trials --- structural biology --- DNA virus --- human bocavirus --- caspase-3 --- viral communities --- uncoating --- PLA2 --- phospholipase-A2 --- oncolytic virus immune therapy --- Parvoviridae --- viral ecology --- Cryo-EM --- AAV --- metagenomics --- phylogeny --- oncolytic viruses --- mite --- parvovirus evolution --- Carnivore protoparvovirus 1 --- adeno-associated virus --- telbivudine --- capsid stability --- virus --- homology modeling --- human airway epithelia --- sequence analysis --- acute gastroenteritis --- bisulfite PCR --- next-generation sequencing --- single stranded DNA virus --- overlapping promoters --- virus diversity --- prognosis --- oncolytic activity --- genome --- hydroxyurea --- Lepidoptera --- genome externalization --- antiviral compounds --- circulating angiogenic cells --- tumor microenvironment --- coumarin derivatives --- nuclear targeting --- densovirus --- receptor interactions --- cell cycle arrest --- transcription profile --- brincidofovir --- canine parvovirus --- endogenous viral elements --- inflammatory cardiomyopathy --- erythroid progenitor cells --- RNA-seq --- insect --- chapparvovirus --- RT-qPCR --- trafficking --- AAV2 --- agricultural pests --- Adeno-associated virus --- myocarditis --- diagnosis --- parvovirus --- feline panleukopenia virus --- chitin --- B19V --- transcription mapping --- flavonoids --- immunomodulation --- erythrovirus --- apoptosis --- adenoviral vector --- anti-cancer --- divalent cations --- protease --- genetics --- preclinical --- arthropod --- peritrophins --- biocontrol --- dilated cardiomyopathy --- insect parvovirus --- combination therapies --- intravenous immunoglobulin (IVIG) --- virus phylogeny --- evolution --- second generation parvovirus treatments --- commercial horse serum --- parvovirus B19 --- canine chapparvovirus --- CpG methylation --- RACE --- H-1PV --- viral metagenomics --- horses
Listing 1 - 4 of 4 |
Sort by
|