Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Handbook of the Shapley Value contains 24 chapters and a foreword written by Alvin E. Roth, who was awarded the Nobel Memorial Prize in Economic Sciences jointly with Lloyd Shapley in 2012. The purpose of the book is to highlight a range of relevant insights into the Shapley value. Every chapter has been written to honor Lloyd Shapley, who introduced this fascinating value in 1953. The first chapter, by William Thomson, places the Shapley value in the broader context of the theory of cooperative games, and briefly introduces each of the individual contributions to the volume. This is followed by a further contribution from the editors of the volume, which serves to introduce the more significant features of the Shapley value. The rest of the chapters in the book deal with different theoretical or applied aspects inspired by this interesting value and have been contributed specifically for this volume by leading experts in the area of Game Theory. Chapters 3 through to 10 are more focused on theoretical aspects of the Shapley value, Chapters 11 to 15 are related to both theoretical and applied areas. Finally, from Chapter 16 to Chapter 24, more attention is paid to applications of the Shapley value to different problems encountered across a diverse range of fields. As expressed by William Thomson in the Introduction to the book, "The chapters contribute to the subject in several dimensions: Mathematical foundations; axiomatic foundations; computations; applications to special classes of games; power indices; applications to enriched classes of games; applications to concretely specified allocation problems: an ever-widening range, mapping allocation problems into games or implementation." Nowadays, the Shapley value continues to be as appealing as when it was first introduced in 1953, or perhaps even more so now that its potential is supported by the quantity and quality of the available results. This volume collects a large amount of work that definitively demonstrates that the Shapley value provides answers and solutions to a wide variety of problems.
Cooperative games (Mathematics) --- Cooperative game theory --- Game theory
Choose an application
This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined.
Cooperative games (Mathematics) --- Game theory --- Values --- Game theory. --- Values. --- Cooperative game theory --- Axiology --- Worth --- Aesthetics --- Knowledge, Theory of --- Metaphysics --- Psychology --- Ethics --- Games, Theory of --- Theory of games --- Mathematical models --- Mathematics
Choose an application
This original and timely monograph describes a unique self-contained excursion that reveals to the readers the roles of two basic cognitive abilities, i.e. intention recognition and arranging commitments, in the evolution of cooperative behavior. This book analyses intention recognition, an important ability that helps agents predict others’ behavior, in its artificial intelligence and evolutionary computational modeling aspects, and proposes a novel intention recognition method. Furthermore, the book presents a new framework for intention-based decision making and illustrates several ways in which an ability to recognize intentions of others can enhance a decision making process. By employing the new intention recognition method and the tools of evolutionary game theory, this book introduces computational models demonstrating that intention recognition promotes the emergence of cooperation within populations of self-regarding agents. Finally, the book describes how commitment provides a pathway to the evolution of cooperative behavior, and how it further empowers intention recognition, thereby leading to a combined improved strategy. .
Artificial intelligence -- Philosophy. --- Artificial intelligence. --- Computational intelligence. --- Engineering & Applied Sciences --- Computer Science --- Artificial intelligence --- Cooperative games (Mathematics) --- Philosophy. --- Cooperative game theory --- Engineering. --- Game theory. --- Complexity, Computational. --- Cognitive psychology. --- Computational Intelligence. --- Game Theory, Economics, Social and Behav. Sciences. --- Artificial Intelligence (incl. Robotics). --- Complexity. --- Cognitive Psychology. --- Psychology, Cognitive --- Cognitive science --- Psychology --- Complexity, Computational --- Electronic data processing --- Machine theory --- Intelligence, Computational --- Soft computing --- Games, Theory of --- Theory of games --- Mathematical models --- Mathematics --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Digital computer simulation --- Logic machines --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Construction --- Industrial arts --- Technology --- Game theory --- Mathematics. --- Consciousness. --- Artificial Intelligence. --- Apperception --- Mind and body --- Perception --- Philosophy --- Spirit --- Self --- Math --- Science --- Computational complexity.
Choose an application
Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels.
Technology: general issues --- History of engineering & technology --- collision avoidance --- ship domain --- fuzzy inference --- collision risk --- early warning system --- marine vessel --- tracking controller --- stability --- functional --- optimal damping --- fin stabilizer --- ship turning --- heel/roll reduction --- L2-gain --- uncertainty --- non-linearity --- ship motion control --- path-following --- guidance algorithm --- nonlinear feedback --- AIS Data --- trajectory prediction --- waterway transportation --- neural networks --- autonomous navigation --- multi-joint autonomous underwater vehicle (MJ-AUV) --- 3-dimensional modeling --- LQR --- LESO --- multicriteria route planning --- genetic algorithm --- particle swarm optimization --- oceanic meteorological routing --- cooperative game theory --- supply chain management --- supply disruption --- unmanned surface vehicle --- Guidance, Navigation and Control --- course keeping --- adaptive sliding mode --- unmanned surface vehicle (USV) --- system identification --- traditional neural network --- physics-informed neural network --- zigzag test --- n/a
Listing 1 - 4 of 4 |
Sort by
|