Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Advances in Organic Corrosion Inhibitors and Protective Coatings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interaction of metal with its environment that results in its chemical alteration is called metallic corrosion. According to the literature, corrosion is classified to two types: uniform and localized corrosion. Intervention in either in the alloy environment or in the alloy structure can provide the corrosion protection of metallic materials. Furthermore, the interference in the metal alloy environment can be conducted with the utilization of cathodic or anodic protection via the corresponding inhibitors. Therefore, the most common categorization is cathodic, anodic, and mixed-type inhibitors, taking into account which half-reaction they suppress during corrosion phenomena. The majority of the organic inhibitors are of mixed type and perform through chemisorption. In order to update the field of the corrosion protection of metal and metal alloys with the use of organic inhibitors, a Special Issue entitled "Advances in Organic Corrosion Inhibitors and Protective Coatings" is introduced. This book gathers and reviews a collection of ten contributions (nine articles and one review), from authors from Europe, Asia, and Africa, that were accepted for publication in this Special Issue of Applied Sciences.


Book
Advances in Organic Corrosion Inhibitors and Protective Coatings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interaction of metal with its environment that results in its chemical alteration is called metallic corrosion. According to the literature, corrosion is classified to two types: uniform and localized corrosion. Intervention in either in the alloy environment or in the alloy structure can provide the corrosion protection of metallic materials. Furthermore, the interference in the metal alloy environment can be conducted with the utilization of cathodic or anodic protection via the corresponding inhibitors. Therefore, the most common categorization is cathodic, anodic, and mixed-type inhibitors, taking into account which half-reaction they suppress during corrosion phenomena. The majority of the organic inhibitors are of mixed type and perform through chemisorption. In order to update the field of the corrosion protection of metal and metal alloys with the use of organic inhibitors, a Special Issue entitled "Advances in Organic Corrosion Inhibitors and Protective Coatings" is introduced. This book gathers and reviews a collection of ten contributions (nine articles and one review), from authors from Europe, Asia, and Africa, that were accepted for publication in this Special Issue of Applied Sciences.


Book
Advances in Organic Corrosion Inhibitors and Protective Coatings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interaction of metal with its environment that results in its chemical alteration is called metallic corrosion. According to the literature, corrosion is classified to two types: uniform and localized corrosion. Intervention in either in the alloy environment or in the alloy structure can provide the corrosion protection of metallic materials. Furthermore, the interference in the metal alloy environment can be conducted with the utilization of cathodic or anodic protection via the corresponding inhibitors. Therefore, the most common categorization is cathodic, anodic, and mixed-type inhibitors, taking into account which half-reaction they suppress during corrosion phenomena. The majority of the organic inhibitors are of mixed type and perform through chemisorption. In order to update the field of the corrosion protection of metal and metal alloys with the use of organic inhibitors, a Special Issue entitled "Advances in Organic Corrosion Inhibitors and Protective Coatings" is introduced. This book gathers and reviews a collection of ten contributions (nine articles and one review), from authors from Europe, Asia, and Africa, that were accepted for publication in this Special Issue of Applied Sciences.

Keywords

Research & information: general --- corrosion --- reinforcements --- concrete --- slag --- LFS --- grounding grid --- metal corrosion --- topology detection --- corrosion detection --- nondestructive testing --- coating --- metallic bipolar plate --- PEMFC --- TiNb --- TiNbN --- brass --- chloride --- triazole derivatives --- poly(phenylene methylene) coatings --- PPM-related copolymer --- rheological additive-free polymer formulation --- AA2024 --- corrosion protection --- electrochemistry --- aluminum 7075 --- anodizing --- oil-impregnation --- corrosion resistance --- salt spray test --- Cerium oxide nanoparticles --- anti-reflection --- self-assembly --- microfluidics --- convective self-assembly --- corrosion inhibitor --- corrosion mechanism --- cysteine --- thin film --- C-Mnsteel --- corrosion inhibitors --- bio-copolymer --- starch --- glycerin --- mild steel --- EIS --- SEM --- Raman spectroscopy --- pitting corrosion --- synergistic effect --- corrosion --- reinforcements --- concrete --- slag --- LFS --- grounding grid --- metal corrosion --- topology detection --- corrosion detection --- nondestructive testing --- coating --- metallic bipolar plate --- PEMFC --- TiNb --- TiNbN --- brass --- chloride --- triazole derivatives --- poly(phenylene methylene) coatings --- PPM-related copolymer --- rheological additive-free polymer formulation --- AA2024 --- corrosion protection --- electrochemistry --- aluminum 7075 --- anodizing --- oil-impregnation --- corrosion resistance --- salt spray test --- Cerium oxide nanoparticles --- anti-reflection --- self-assembly --- microfluidics --- convective self-assembly --- corrosion inhibitor --- corrosion mechanism --- cysteine --- thin film --- C-Mnsteel --- corrosion inhibitors --- bio-copolymer --- starch --- glycerin --- mild steel --- EIS --- SEM --- Raman spectroscopy --- pitting corrosion --- synergistic effect


Book
Nanoscale Self-Assembly: Nanopatterning and Metrology
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The self-assembly process underlies a plethora of natural phenomena from the macro to the nano scale. Often, technological development has found great inspiration in the natural world, as evidenced by numerous fabrication techniques based on self-assembly (SA). One striking example is given by epitaxial growths, in which atoms represent the building blocks. In lithography, the use of self-assembling materials is considered an extremely promising patterning option to overcome the size scale limitations imposed by the conventional photolithographic methods. To this purpose, in the last two decades several supramolecular self-assembling materials have been investigated and successfully applied to create patterns at a nanometric scale. Although considerable progress has been made so far in the control of self-assembly processes applied to nanolithography, a number of unresolved problems related to the reproducibility and metrology of the self-assembled features are still open. Addressing these issues is mandatory in order to allow the widespread diffusion of SA materials for applications such as microelectronics, photonics, or biology. In this context, the aim of the present Special Issue is to gather original research papers and comprehensive reviews covering various aspects of the self-assembly processes applied to nanopatterning. Topics include the development of novel SA methods, the realization of nanometric structures and devices, and the improvement of their long-range order. Moreover, metrology issues related to the nanoscale characterization of self-assembled structures are addressed.

Keywords

Technology: general issues --- block copolymer self-assembly --- analytical ultracentrifugation --- tannic acid --- 3D printing --- nano-resolution --- arbitrary distribution --- multimaterials --- deposition surface --- rapidity --- large scale --- conjugated polymers --- polyfullerenes --- processing by convective self-assembly --- thin films and microstructure --- photoluminescence quenching --- block copolymers --- self-assembly --- polymer interface --- nanostructure metrology --- line edge roughness LER --- (S)TEM --- STEM-EELS of PS and PMMA --- directed self-assembly --- nanospheres lithography --- colloidal nanospheres --- direct laser-writing --- directed self-assembly (DSA) --- block copolymers (BCPs) --- chemo-epitaxy --- polystyrene-block-polymethylmethacrylate (PS-b-PMMA) --- line/space patterning --- line edge roughness (LER) --- line width roughness (LWR) --- sequential infiltration synthesis --- block copolymer --- nanoparticles --- colloidal clusters --- colloidal molecules --- sedimentation --- separation --- classification of nanoparticles --- analytical centrifugation --- differential centrifugal sedimentation --- disk centrifuge --- density gradient centrifugation --- block copolymer self-assembly --- analytical ultracentrifugation --- tannic acid --- 3D printing --- nano-resolution --- arbitrary distribution --- multimaterials --- deposition surface --- rapidity --- large scale --- conjugated polymers --- polyfullerenes --- processing by convective self-assembly --- thin films and microstructure --- photoluminescence quenching --- block copolymers --- self-assembly --- polymer interface --- nanostructure metrology --- line edge roughness LER --- (S)TEM --- STEM-EELS of PS and PMMA --- directed self-assembly --- nanospheres lithography --- colloidal nanospheres --- direct laser-writing --- directed self-assembly (DSA) --- block copolymers (BCPs) --- chemo-epitaxy --- polystyrene-block-polymethylmethacrylate (PS-b-PMMA) --- line/space patterning --- line edge roughness (LER) --- line width roughness (LWR) --- sequential infiltration synthesis --- block copolymer --- nanoparticles --- colloidal clusters --- colloidal molecules --- sedimentation --- separation --- classification of nanoparticles --- analytical centrifugation --- differential centrifugal sedimentation --- disk centrifuge --- density gradient centrifugation


Book
Nanoscale Self-Assembly: Nanopatterning and Metrology
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The self-assembly process underlies a plethora of natural phenomena from the macro to the nano scale. Often, technological development has found great inspiration in the natural world, as evidenced by numerous fabrication techniques based on self-assembly (SA). One striking example is given by epitaxial growths, in which atoms represent the building blocks. In lithography, the use of self-assembling materials is considered an extremely promising patterning option to overcome the size scale limitations imposed by the conventional photolithographic methods. To this purpose, in the last two decades several supramolecular self-assembling materials have been investigated and successfully applied to create patterns at a nanometric scale. Although considerable progress has been made so far in the control of self-assembly processes applied to nanolithography, a number of unresolved problems related to the reproducibility and metrology of the self-assembled features are still open. Addressing these issues is mandatory in order to allow the widespread diffusion of SA materials for applications such as microelectronics, photonics, or biology. In this context, the aim of the present Special Issue is to gather original research papers and comprehensive reviews covering various aspects of the self-assembly processes applied to nanopatterning. Topics include the development of novel SA methods, the realization of nanometric structures and devices, and the improvement of their long-range order. Moreover, metrology issues related to the nanoscale characterization of self-assembled structures are addressed.


Book
Nanoscale Self-Assembly: Nanopatterning and Metrology
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The self-assembly process underlies a plethora of natural phenomena from the macro to the nano scale. Often, technological development has found great inspiration in the natural world, as evidenced by numerous fabrication techniques based on self-assembly (SA). One striking example is given by epitaxial growths, in which atoms represent the building blocks. In lithography, the use of self-assembling materials is considered an extremely promising patterning option to overcome the size scale limitations imposed by the conventional photolithographic methods. To this purpose, in the last two decades several supramolecular self-assembling materials have been investigated and successfully applied to create patterns at a nanometric scale. Although considerable progress has been made so far in the control of self-assembly processes applied to nanolithography, a number of unresolved problems related to the reproducibility and metrology of the self-assembled features are still open. Addressing these issues is mandatory in order to allow the widespread diffusion of SA materials for applications such as microelectronics, photonics, or biology. In this context, the aim of the present Special Issue is to gather original research papers and comprehensive reviews covering various aspects of the self-assembly processes applied to nanopatterning. Topics include the development of novel SA methods, the realization of nanometric structures and devices, and the improvement of their long-range order. Moreover, metrology issues related to the nanoscale characterization of self-assembled structures are addressed.

Listing 1 - 6 of 6
Sort by