Narrow your search
Listing 1 - 10 of 44 << page
of 5
>>
Sort by

Book
Advances in contact angle, wettability and adhesion
Author:
ISBN: 9781118472927 Year: 2013 Publisher: Hoboken, New Jersey Scrivener Publishing, Wiley

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Applied surface thermodynamics
Authors: --- --- ---
ISBN: 9780849396878 0849396875 9781138116375 9781420009668 Year: 2017 Publisher: [Boca Raton, FL] : CRC Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Surface thermodynamics forms the foundation of any meaningful study of capillarity and wetting phenomena. The second edition of Applied Surface Thermodynamics offers a comprehensive state-of-the-art treatment of this critical topic. It provides students and researchers with fundamental knowledge and practical guidelines in solving real-world problems related to the measurement and interpretation of interfacial properties.Containing 40 percent new material and reorganized content, this second edition begins by presenting a generalized Gibbs theory of capillarity, including discussions of highly curved interfaces. Concentrating on drop-shape techniques, the book discusses liquid-fluid interfacial tension and its measurement. Next, the authors focus on contact angles with chapters on experimental procedures, thermodynamic models, and the interpretation of contact angles in terms of solid surface tension. The book discusses theoretical approaches to determining solid surface tension as well as interfacial tensions of particles and their manifestations. It concludes by discussing drop size dependence of contact angles and line tension.What's New in the Second Edition:

Contact angle, wettability and adhesion : Festschrift in honor of Professor Robert J. Good
Authors: --- ---
ISBN: 906764157X Year: 1993 Publisher: Utrecht : VSP,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Dissertation
Extension of a PFEM compressible flow solver for droplet spreading phenomena
Authors: --- --- ---
Year: 2024 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

This work focuses on the extension of an already existing particle finite element method (PFEM) solver : PFEM3D. The goal is to extend its reach of applicability in order to model liquid-substrate phenomena, such as the capillary effect, the formation of a contact angle at the contact line, and dissipation due to friction at the liquid-substrate contact, which are predominant effects at small-scale fluid dynamics problems. For this purpose, the PFEM implementation of PFEM3D is compared with a state of the art model : the lacking contributions are identified and added to the computer model. A set of verification tests is then performed to verify if the obtained results are comparable to those provided by the reference source. After extensive validation of the numerical model, a simple implementation for contact angle hysteresis is suggested.

Applied surface thermodynamics
Authors: --- ---
ISBN: 0824790960 9780824790967 Year: 1996 Volume: 63 Publisher: New York : M. Dekker,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Offers a treatment of applied surface dynamics in relation to contact angles and surface tensions, providing a foundation for the subject and detailed presentations of recent techniques. The work supplies a theoretical framework for the study and measurement of surface tensions and contact angles, and acts as a day-to-day guide for laboratory practice.


Book
Water-Soluble and Insoluble Polymers and Biopolymers for Biomedical, Environmental, and Biological Applications
Authors: ---
Year: 2022 Publisher: Basel : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of polymers in biological applications is defined by the interactions promoted between living organisms and polymeric chains, which are generally associated with the polymers’ hydrophilic and hydrophobic behaviors. However, these water-friendly structures are also very useful for other applications, such as the adsorption of pollutants from sewage water. The modulation of the final properties of water-soluble and insoluble polymers tends to define the spectra of features associated with their final applications.


Book
Application of Nanoparticles for Oil Recovery
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The oil industry has, in the last decade, seen successful applications of nanotechnology in completion systems, completion fluids, drilling fluids, and in improvements of well constructions, equipment, and procedures. However, very few full field applications of nanoparticles as an additive to injection fluids for enhanced oil recovery (EOR) have been reported. Many types of chemical enhanced oil recovery methods have been used in fields all over the world for many decades and have resulted in higher recovery, but the projects have very often not been economic. Therefore, the oil industry is searching for a more efficient enhanced oil recovery method. Based on the success of nanotechnology in various areas of the oil industry, nanoparticles have been extensively studied as an additive in injection fluids for EOR. This book includes a selection of research articles on the use of nanoparticles for EOR application. The articles are discussing nanoparticles as additive in waterflooding and surfactant flooding, stability and wettability alteration ability of nanoparticles and nanoparticle stabilized foam for CO2-EOR. The book also includes articles on nanoparticles as an additive in biopolymer flooding and studies on the use of nanocellulose as a method to increase the viscosity of injection water. Mathematical models of the injection of nanoparticle-polymer solutions are also presented.

Keywords

Technology: general issues --- nanomaterials --- pore throat size distribution --- mercury injection capillary pressure --- interfacial tension --- contact angle --- enhanced oil recovery --- surfactant --- nanoparticle --- chemical flooding --- nanocellulose --- cellulose nanocrystals --- TEMPO-oxidized cellulose nanofibrils --- microfluidics --- biopolymer --- silica nanoparticles --- nanoparticle stability --- reservoir condition --- reservoir rock --- crude oil --- nanoparticle agglomeration --- polymer flooding --- formation rheological characteristics --- polymer concentration --- recovery factor --- mathematical model --- nanoparticles --- foam --- CO2 EOR --- CO2 mobility control --- nanotechnology for EOR --- nanoparticles stability --- polymer-coated nanoparticles --- core flood --- EOR --- wettability alteration --- nanoparticle-stabilized emulsion and flow diversion --- nanomaterials --- pore throat size distribution --- mercury injection capillary pressure --- interfacial tension --- contact angle --- enhanced oil recovery --- surfactant --- nanoparticle --- chemical flooding --- nanocellulose --- cellulose nanocrystals --- TEMPO-oxidized cellulose nanofibrils --- microfluidics --- biopolymer --- silica nanoparticles --- nanoparticle stability --- reservoir condition --- reservoir rock --- crude oil --- nanoparticle agglomeration --- polymer flooding --- formation rheological characteristics --- polymer concentration --- recovery factor --- mathematical model --- nanoparticles --- foam --- CO2 EOR --- CO2 mobility control --- nanotechnology for EOR --- nanoparticles stability --- polymer-coated nanoparticles --- core flood --- EOR --- wettability alteration --- nanoparticle-stabilized emulsion and flow diversion


Book
Water-Soluble and Insoluble Polymers and Biopolymers for Biomedical, Environmental, and Biological Applications
Authors: ---
Year: 2022 Publisher: Basel : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of polymers in biological applications is defined by the interactions promoted between living organisms and polymeric chains, which are generally associated with the polymers’ hydrophilic and hydrophobic behaviors. However, these water-friendly structures are also very useful for other applications, such as the adsorption of pollutants from sewage water. The modulation of the final properties of water-soluble and insoluble polymers tends to define the spectra of features associated with their final applications.


Book
Carbonates
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is aimed at presenting the state of the art of the multidisciplinary science concerning all aspects of volcanic plumes, of relevance to the volcanology, climatology, atmospheric science, and remote sensing communities.

Keywords

alginate --- gas diffusion method --- bubble-column scrubber --- X-ray diffraction --- phosphorylated chitin --- calcite --- calcium carbonate --- sedimentary model --- composite --- urease --- Amu Darya Basin --- sericin --- aragonite --- ammonia bicarbonate --- capture --- hydrogels --- bacterial extracellular secretion --- MICP --- carbonation --- SEM --- multi-wall carbon nanotubes --- micromechanics --- Lessonia nigrescens --- biomineralization --- Bacillus subtilis --- CO2 --- Sporosarcina pasteurii --- CaCO3 --- mass-transfer coefficient --- hierarchic structure --- main controlling factors --- carbon dioxide --- surface energy --- Callovian-Oxfordian --- contact angle --- potentiometric titration --- xanthan --- cement --- crystallization --- nacre --- reservoir --- electrocrystallization --- alginate --- gas diffusion method --- bubble-column scrubber --- X-ray diffraction --- phosphorylated chitin --- calcite --- calcium carbonate --- sedimentary model --- composite --- urease --- Amu Darya Basin --- sericin --- aragonite --- ammonia bicarbonate --- capture --- hydrogels --- bacterial extracellular secretion --- MICP --- carbonation --- SEM --- multi-wall carbon nanotubes --- micromechanics --- Lessonia nigrescens --- biomineralization --- Bacillus subtilis --- CO2 --- Sporosarcina pasteurii --- CaCO3 --- mass-transfer coefficient --- hierarchic structure --- main controlling factors --- carbon dioxide --- surface energy --- Callovian-Oxfordian --- contact angle --- potentiometric titration --- xanthan --- cement --- crystallization --- nacre --- reservoir --- electrocrystallization


Book
Physics of wetting
Author:
ISBN: 3110437163 311044481X 9783110444810 9783110437164 3110444801 9783110444803 9783110258530 9783110258790 9783112203750 311025879X 9781680152067 1680152068 3110258536 Year: 2017 Publisher: Berlin Boston De Gruyter

Loading...
Export citation

Choose an application

Bookmark

Abstract

The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data.

Listing 1 - 10 of 44 << page
of 5
>>
Sort by