Narrow your search

Library

Thomas More Mechelen (6)

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

UCLL (5)

ULiège (5)

VIVES (5)

Vlaams Parlement (5)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2022 (3)

2021 (6)

2019 (2)

1991 (1)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Electronic packaging and interconnection handbook
Author:
ISBN: 0070266840 Year: 1991 Publisher: New York (N.Y.) : McGraw-Hill,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Studies in Historical Linguistics and Language Change. Grammaticalization, Refunctionalization and Beyond
Authors: ---
ISBN: 3039215779 3039215760 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present volume examines the usefulness of a particular set of concepts and processes of change studying their applicability to a range of linguistic changes in Spanish and Latin that cannot be easily or can only be partially accounted for within the framework of grammaticalization. Rather than challenging the insights of grammaticalization theory, the different contributions to this monograph demonstrate that exaptation, capitalization, refunctionalization and adfunctionalization, as well as changes motivated by rhetorical guidelines, constitute interesting and valuable notions that allow for a better understanding of specific language changes in Spanish and, by extension, of language change in general.


Book
Selected Papers from the 9th Symposium on Micro-Nano Science and Technology on Micromachines
Authors: --- ---
ISBN: 303921697X 3039216961 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue presents selected papers from the 8th

Keywords

n/a --- flexible electronic device --- microfluidic channels --- stretchable electronic substrate --- glyoxylic acid Cu complex --- flexible device --- implant --- laser direct writing --- surface mounting --- surface plasmon resonance --- skeletal muscle --- medical device --- functional surface --- liquid metal --- engineered muscle --- myoblast --- adipose tissue --- kirigami structure --- biocompatible --- mechanical metamaterials --- connector --- micro-PIV --- contact resistance --- adipocyte --- magneto-impedance sensor --- acoustofluidics --- three-dimensional cell culture --- microfluidics --- core-shell hydrogel fiber --- nondestructive inspection --- vibration-induced flow --- nanoscale structure --- nano/microparticle separation --- logarithmic amplifier --- femtosecond laser --- near-infrared --- tactile display --- spectroscopy --- micro-pillar --- numerical analysis --- microscale thermophoresis --- condensation --- wettability --- 4D printing --- artificial kidney --- electrical impedance measurement --- lipid droplet --- high frequency --- blood coagulation --- micro-electro-mechanical-systems (MEMS) technologies --- biofabrication --- thermal sensation --- cyclic stretch --- molecular dynamics --- Cu micropattern --- thin-film --- grating --- Si --- multiphase flow --- artificial blood vessel --- lipolysis --- thermal conductivity --- reduction --- contact pressure --- 3D printing --- 3T3-L1 --- thermal tactile display --- Schottky barrier --- stimuli-responsive hydrogel


Book
Numerical Study of Concrete
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Concrete is one of the most widely used construction material in the word today. The research in concrete follows the environment impact, economy, population and advanced technology. This special issue presents the recent numerical study for research in concrete. The research topic includes the finite element analysis, digital concrete, reinforcement technique without rebars and 3D printing.

Keywords

Technology: general issues --- History of engineering & technology --- cementitious composite --- nano-SiO2 --- PVA fiber --- durability evaluation --- adaptive neuro-fuzzy inference system --- aggregate type --- specimen shape --- specimen size --- compressive strength --- concrete mechanical properties --- concrete composites --- waste metalised polypropylene fibres --- durability --- sulphate and acid attacks --- palm oil fuel ash --- fiber-reinforced concrete --- blast resistance --- lattice discrete particle model-fiber --- damage mode --- contact detonation --- concrete brick --- FGD gypsum --- construction and demolition waste --- oil palm trunks --- sugarcane bagasse ash --- sensitivity analysis --- gene expression programming --- multiple linear and non-linear regression --- green concrete --- concrete-filled steel tube (CFST) --- axial capacity --- genetic engineering programming (GEP) --- Euler's buckling load --- GEP-based model --- calcium silicate hydrate --- simulation --- concrete --- corrosion inhibitor --- grand canonical Monte Carlo method --- molecular dynamics --- adsorption --- coupled RBSM and solid FEM model --- PBL shear connector --- shear strength --- lateral pressures --- failure mechanism --- bamboo-reinforced concrete (BRC) --- stiffness prediction --- artificial neural network (ANN) --- radioactive waste --- long-term performance --- degradation --- modeling --- finite element analysis --- mechanical properties --- mechanisms --- diffusion --- material properties --- sodium alginate --- basalt fiber --- temperature --- impact resistance --- pre-packed aggregate fibre-reinforced concrete --- strength --- long-term shrinkage --- microstructure --- waste polypropylene fibres --- cohesion --- angle of shear deformation --- Mohr-Coulomb model --- induced tensile strength --- concrete samples --- Brazilian test --- finite element method (FEM) --- artificial neural networks --- confined concrete --- strength model --- FRP --- strain model --- RMSE --- forta fibers --- synthetic fibers --- hybrid fiber reinforced concrete --- constitutive modeling --- uniaxial test --- slump test --- pore structure --- water absorption --- MIP --- fractal dimension --- pore connectivity --- T-shaped reinforced concrete beams --- CFRP --- numerical analysis --- non-destructive test (NDT) --- elastic wave --- air-entrained rubberized concrete --- stress-strain curve --- concrete failure --- damage of material --- effective modulus of elasticity --- effective stress --- hybrid-fiber-reinforced concrete --- shaft lining --- numerical simulation --- orthogonal test --- ultimate capacity --- cementitious composite --- nano-SiO2 --- PVA fiber --- durability evaluation --- adaptive neuro-fuzzy inference system --- aggregate type --- specimen shape --- specimen size --- compressive strength --- concrete mechanical properties --- concrete composites --- waste metalised polypropylene fibres --- durability --- sulphate and acid attacks --- palm oil fuel ash --- fiber-reinforced concrete --- blast resistance --- lattice discrete particle model-fiber --- damage mode --- contact detonation --- concrete brick --- FGD gypsum --- construction and demolition waste --- oil palm trunks --- sugarcane bagasse ash --- sensitivity analysis --- gene expression programming --- multiple linear and non-linear regression --- green concrete --- concrete-filled steel tube (CFST) --- axial capacity --- genetic engineering programming (GEP) --- Euler's buckling load --- GEP-based model --- calcium silicate hydrate --- simulation --- concrete --- corrosion inhibitor --- grand canonical Monte Carlo method --- molecular dynamics --- adsorption --- coupled RBSM and solid FEM model --- PBL shear connector --- shear strength --- lateral pressures --- failure mechanism --- bamboo-reinforced concrete (BRC) --- stiffness prediction --- artificial neural network (ANN) --- radioactive waste --- long-term performance --- degradation --- modeling --- finite element analysis --- mechanical properties --- mechanisms --- diffusion --- material properties --- sodium alginate --- basalt fiber --- temperature --- impact resistance --- pre-packed aggregate fibre-reinforced concrete --- strength --- long-term shrinkage --- microstructure --- waste polypropylene fibres --- cohesion --- angle of shear deformation --- Mohr-Coulomb model --- induced tensile strength --- concrete samples --- Brazilian test --- finite element method (FEM) --- artificial neural networks --- confined concrete --- strength model --- FRP --- strain model --- RMSE --- forta fibers --- synthetic fibers --- hybrid fiber reinforced concrete --- constitutive modeling --- uniaxial test --- slump test --- pore structure --- water absorption --- MIP --- fractal dimension --- pore connectivity --- T-shaped reinforced concrete beams --- CFRP --- numerical analysis --- non-destructive test (NDT) --- elastic wave --- air-entrained rubberized concrete --- stress-strain curve --- concrete failure --- damage of material --- effective modulus of elasticity --- effective stress --- hybrid-fiber-reinforced concrete --- shaft lining --- numerical simulation --- orthogonal test --- ultimate capacity


Book
Numerical Study of Concrete
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Concrete is one of the most widely used construction material in the word today. The research in concrete follows the environment impact, economy, population and advanced technology. This special issue presents the recent numerical study for research in concrete. The research topic includes the finite element analysis, digital concrete, reinforcement technique without rebars and 3D printing.

Keywords

Technology: general issues --- History of engineering & technology --- cementitious composite --- nano-SiO2 --- PVA fiber --- durability evaluation --- adaptive neuro-fuzzy inference system --- aggregate type --- specimen shape --- specimen size --- compressive strength --- concrete mechanical properties --- concrete composites --- waste metalised polypropylene fibres --- durability --- sulphate and acid attacks --- palm oil fuel ash --- fiber-reinforced concrete --- blast resistance --- lattice discrete particle model-fiber --- damage mode --- contact detonation --- concrete brick --- FGD gypsum --- construction and demolition waste --- oil palm trunks --- sugarcane bagasse ash --- sensitivity analysis --- gene expression programming --- multiple linear and non-linear regression --- green concrete --- concrete-filled steel tube (CFST) --- axial capacity --- genetic engineering programming (GEP) --- Euler’s buckling load --- GEP-based model --- calcium silicate hydrate --- simulation --- concrete --- corrosion inhibitor --- grand canonical Monte Carlo method --- molecular dynamics --- adsorption --- coupled RBSM and solid FEM model --- PBL shear connector --- shear strength --- lateral pressures --- failure mechanism --- bamboo-reinforced concrete (BRC) --- stiffness prediction --- artificial neural network (ANN) --- radioactive waste --- long-term performance --- degradation --- modeling --- finite element analysis --- mechanical properties --- mechanisms --- diffusion --- material properties --- sodium alginate --- basalt fiber --- temperature --- impact resistance --- pre-packed aggregate fibre-reinforced concrete --- strength --- long-term shrinkage --- microstructure --- waste polypropylene fibres --- cohesion --- angle of shear deformation --- Mohr–Coulomb model --- induced tensile strength --- concrete samples --- Brazilian test --- finite element method (FEM) --- artificial neural networks --- confined concrete --- strength model --- FRP --- strain model --- RMSE --- forta fibers --- synthetic fibers --- hybrid fiber reinforced concrete --- constitutive modeling --- uniaxial test --- slump test --- pore structure --- water absorption --- MIP --- fractal dimension --- pore connectivity --- T-shaped reinforced concrete beams --- CFRP --- numerical analysis --- non-destructive test (NDT) --- elastic wave --- air-entrained rubberized concrete --- stress-strain curve --- concrete failure --- damage of material --- effective modulus of elasticity --- effective stress --- hybrid-fiber-reinforced concrete --- shaft lining --- numerical simulation --- orthogonal test --- ultimate capacity --- n/a --- Euler's buckling load --- Mohr-Coulomb model


Book
Numerical Study of Concrete
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Concrete is one of the most widely used construction material in the word today. The research in concrete follows the environment impact, economy, population and advanced technology. This special issue presents the recent numerical study for research in concrete. The research topic includes the finite element analysis, digital concrete, reinforcement technique without rebars and 3D printing.

Keywords

cementitious composite --- nano-SiO2 --- PVA fiber --- durability evaluation --- adaptive neuro-fuzzy inference system --- aggregate type --- specimen shape --- specimen size --- compressive strength --- concrete mechanical properties --- concrete composites --- waste metalised polypropylene fibres --- durability --- sulphate and acid attacks --- palm oil fuel ash --- fiber-reinforced concrete --- blast resistance --- lattice discrete particle model-fiber --- damage mode --- contact detonation --- concrete brick --- FGD gypsum --- construction and demolition waste --- oil palm trunks --- sugarcane bagasse ash --- sensitivity analysis --- gene expression programming --- multiple linear and non-linear regression --- green concrete --- concrete-filled steel tube (CFST) --- axial capacity --- genetic engineering programming (GEP) --- Euler’s buckling load --- GEP-based model --- calcium silicate hydrate --- simulation --- concrete --- corrosion inhibitor --- grand canonical Monte Carlo method --- molecular dynamics --- adsorption --- coupled RBSM and solid FEM model --- PBL shear connector --- shear strength --- lateral pressures --- failure mechanism --- bamboo-reinforced concrete (BRC) --- stiffness prediction --- artificial neural network (ANN) --- radioactive waste --- long-term performance --- degradation --- modeling --- finite element analysis --- mechanical properties --- mechanisms --- diffusion --- material properties --- sodium alginate --- basalt fiber --- temperature --- impact resistance --- pre-packed aggregate fibre-reinforced concrete --- strength --- long-term shrinkage --- microstructure --- waste polypropylene fibres --- cohesion --- angle of shear deformation --- Mohr–Coulomb model --- induced tensile strength --- concrete samples --- Brazilian test --- finite element method (FEM) --- artificial neural networks --- confined concrete --- strength model --- FRP --- strain model --- RMSE --- forta fibers --- synthetic fibers --- hybrid fiber reinforced concrete --- constitutive modeling --- uniaxial test --- slump test --- pore structure --- water absorption --- MIP --- fractal dimension --- pore connectivity --- T-shaped reinforced concrete beams --- CFRP --- numerical analysis --- non-destructive test (NDT) --- elastic wave --- air-entrained rubberized concrete --- stress-strain curve --- concrete failure --- damage of material --- effective modulus of elasticity --- effective stress --- hybrid-fiber-reinforced concrete --- shaft lining --- numerical simulation --- orthogonal test --- ultimate capacity --- n/a --- Euler's buckling load --- Mohr-Coulomb model


Book
Testing of Materials and Elements in Civil Engineering,
Author:
Year: 2021 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained.

Keywords

Technology. --- rock bolt --- grouting quality --- dynamic response --- natural frequency --- finite element method --- monitoring --- historical masonry wall --- hygrothermal processes --- internal insulation --- testing of building materials --- test uncertainty --- validation of test methods --- sustainable test methods --- recycling --- foamed asphalt mixtures with cement (FAC) --- base layer --- reclaimed asphalt pavement (RAP) --- fatigue durability --- GFRP --- FRP reinforcement --- shear --- capacity --- reinforced concrete beams --- column --- stiffness --- FRCM --- PBO mesh --- PBO–FRCM --- carpentry joints --- scarf and splice joints --- stop-splayed scarf joints (‘bolt of lightning’) --- static behaviour --- experimental research --- concrete --- non-destructive testing --- ultrasounds --- ultrasonic tomography --- acoustic methods --- defects --- diagnostic --- detection --- convolutional neural networks --- transfer learning --- monitoring FBG --- power transmission tower --- civil engineering --- X-ray microtomography --- microstructure characteristics --- infiltration damage --- high-strength concrete --- steel fibres --- flexural tensile strength --- fracture energy --- numerical analysis --- concrete floors --- compressive strength --- strength distribution --- industrial floors --- ultrasound tests --- ventilated facades --- large-scale facade model --- fire safety --- fiber cement board --- large-slab ceramic tile --- plasterboards --- moisture content --- hydration processes --- mechanical properties --- ultrasound measurements --- ESD resin --- expansion joint --- quasi-plastic material --- energy absorption --- asphalt mix --- compaction index --- volumetric parameters --- stiffness modulus --- moisture resistance --- roughness --- texture --- close-range photogrammetry --- bond strength --- random field generation --- semivariograms --- hybrid truss bridge --- steel–concrete connection joint --- mechanical behavior --- failure mode --- strain --- static test --- static elastic modulus --- dynamic elastic modulus --- machine learning --- P-wave --- S-wave --- resonance frequency test --- nondestructive method --- Al–Ti laminate --- fracture --- acoustic emission diagnostic --- pattern recognition --- clustering AE signal --- storage systems --- tab connector --- flexural test --- capable design moment --- restrained ring test --- autogenous shrinkage cracking --- concrete cracking test --- concrete shrinkage cracking test --- restrined ring calibration --- cement–fiber boards --- acoustic emission method --- k-means algorithm --- wavelet analysis --- fiber composites --- ground penetrating radar (GPR) --- HMA dielectric constant --- road pavement thickness estimation --- early age concrete --- damage processes detection before loading --- strength of structures --- aggregate --- classification --- wire mesh --- roundness --- tilting angle --- opening size --- concrete centrifugation --- morphology --- image processing --- porosity --- cement --- waste paper sludge ash (WPSA) --- controlled low-strength material (CLSM) --- unconfined compressive strength --- bearing capacity --- backfill material --- P-wave velocity --- amplitude attenuation --- resistivity --- CT scan --- sandstone --- damage variable --- nuclear magnetic resonance --- spin-lattice relaxometry --- proton --- hydration kinetics --- superplasticizer --- ready-mixed concrete --- construction material --- quality assessment --- conformity criteria --- statistical-fuzzy method --- FRTP --- rivet --- connection --- polyethylene pipe --- mechanical properties of polyethylene --- resistance strain --- computer simulation --- residual shear stress --- particle crushing --- ring shear test --- particle flow code (PFC2D) --- frictional work --- fibre-reinforced concrete --- recycled steel fibres --- micro-computed tomography --- scanning electron microscopy --- tensile strength --- reinforced concrete --- diagnostic testing --- corrosion --- carbonation --- galvanostatic pulse method --- phase composition analysis --- X-ray analysis --- thermal analysis --- quasi-brittle cement composites --- low-module polypropylene fibres --- elastic range --- digital image correlation --- Arcan shear test --- wood --- orthotropic shear modulus --- elastic-plastic material --- shear wave velocity --- sand --- bender elements test --- grain-size characteristics --- complex modulus --- shrinkage analysis --- reclaimed asphalt --- mineral–cement emulsion mixtures --- cement dusty by-products (UCPPs) --- degradation of glass panels --- effective area ratio --- relative mass loss --- visible light transmittance --- windblown sand --- wood-plastic composites --- methods of testing resistance to fungi --- methods of assessment --- ground-penetrating radar (GPR) --- non-destructive techniques (NDT) --- corrosion of reinforcement --- slip resistance --- granite floor --- slip resistance value --- ramp test --- acceptance angle --- sliding friction coefficient --- comparability of test methods --- wall temperature --- fibre bragg grating sensors --- freeze-thaw cycles --- signal analysis --- short-time Fourier transform --- fast Fourier transform --- brine --- sodium chloride --- X-ray --- partition walls --- brick walls --- bending strength --- cracking --- post-tension --- cable --- girder --- destructive test --- non-destructive test --- structural health monitoring --- safety --- monitoring fibre Bragg grating --- mining areas --- strain/stress distribution --- geopolymer concrete --- fly-ash --- bottom-ash --- neural network --- sustainability --- industrial waste management --- flexural strength --- cladding --- AE acoustic emission --- micro-events --- sound spectrum --- traditional and quasi-brittle cement composites --- residual-state creep --- saturation front --- landslides --- erosional stability --- laboratory testing --- grout mixtures --- groundwater --- test apparatus --- testing --- building materials --- elements


Book
Testing of Materials and Elements in Civil Engineering,
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained.

Keywords

Technology. --- rock bolt --- grouting quality --- dynamic response --- natural frequency --- finite element method --- monitoring --- historical masonry wall --- hygrothermal processes --- internal insulation --- testing of building materials --- test uncertainty --- validation of test methods --- sustainable test methods --- recycling --- foamed asphalt mixtures with cement (FAC) --- base layer --- reclaimed asphalt pavement (RAP) --- fatigue durability --- GFRP --- FRP reinforcement --- shear --- capacity --- reinforced concrete beams --- column --- stiffness --- FRCM --- PBO mesh --- PBO–FRCM --- carpentry joints --- scarf and splice joints --- stop-splayed scarf joints (‘bolt of lightning’) --- static behaviour --- experimental research --- concrete --- non-destructive testing --- ultrasounds --- ultrasonic tomography --- acoustic methods --- defects --- diagnostic --- detection --- convolutional neural networks --- transfer learning --- monitoring FBG --- power transmission tower --- civil engineering --- X-ray microtomography --- microstructure characteristics --- infiltration damage --- high-strength concrete --- steel fibres --- flexural tensile strength --- fracture energy --- numerical analysis --- concrete floors --- compressive strength --- strength distribution --- industrial floors --- ultrasound tests --- ventilated facades --- large-scale facade model --- fire safety --- fiber cement board --- large-slab ceramic tile --- plasterboards --- moisture content --- hydration processes --- mechanical properties --- ultrasound measurements --- ESD resin --- expansion joint --- quasi-plastic material --- energy absorption --- asphalt mix --- compaction index --- volumetric parameters --- stiffness modulus --- moisture resistance --- roughness --- texture --- close-range photogrammetry --- bond strength --- random field generation --- semivariograms --- hybrid truss bridge --- steel–concrete connection joint --- mechanical behavior --- failure mode --- strain --- static test --- static elastic modulus --- dynamic elastic modulus --- machine learning --- P-wave --- S-wave --- resonance frequency test --- nondestructive method --- Al–Ti laminate --- fracture --- acoustic emission diagnostic --- pattern recognition --- clustering AE signal --- storage systems --- tab connector --- flexural test --- capable design moment --- restrained ring test --- autogenous shrinkage cracking --- concrete cracking test --- concrete shrinkage cracking test --- restrined ring calibration --- cement–fiber boards --- acoustic emission method --- k-means algorithm --- wavelet analysis --- fiber composites --- ground penetrating radar (GPR) --- HMA dielectric constant --- road pavement thickness estimation --- early age concrete --- damage processes detection before loading --- strength of structures --- aggregate --- classification --- wire mesh --- roundness --- tilting angle --- opening size --- concrete centrifugation --- morphology --- image processing --- porosity --- cement --- waste paper sludge ash (WPSA) --- controlled low-strength material (CLSM) --- unconfined compressive strength --- bearing capacity --- backfill material --- P-wave velocity --- amplitude attenuation --- resistivity --- CT scan --- sandstone --- damage variable --- nuclear magnetic resonance --- spin-lattice relaxometry --- proton --- hydration kinetics --- superplasticizer --- ready-mixed concrete --- construction material --- quality assessment --- conformity criteria --- statistical-fuzzy method --- FRTP --- rivet --- connection --- polyethylene pipe --- mechanical properties of polyethylene --- resistance strain --- computer simulation --- residual shear stress --- particle crushing --- ring shear test --- particle flow code (PFC2D) --- frictional work --- fibre-reinforced concrete --- recycled steel fibres --- micro-computed tomography --- scanning electron microscopy --- tensile strength --- reinforced concrete --- diagnostic testing --- corrosion --- carbonation --- galvanostatic pulse method --- phase composition analysis --- X-ray analysis --- thermal analysis --- quasi-brittle cement composites --- low-module polypropylene fibres --- elastic range --- digital image correlation --- Arcan shear test --- wood --- orthotropic shear modulus --- elastic-plastic material --- shear wave velocity --- sand --- bender elements test --- grain-size characteristics --- complex modulus --- shrinkage analysis --- reclaimed asphalt --- mineral–cement emulsion mixtures --- cement dusty by-products (UCPPs) --- degradation of glass panels --- effective area ratio --- relative mass loss --- visible light transmittance --- windblown sand --- wood-plastic composites --- methods of testing resistance to fungi --- methods of assessment --- ground-penetrating radar (GPR) --- non-destructive techniques (NDT) --- corrosion of reinforcement --- slip resistance --- granite floor --- slip resistance value --- ramp test --- acceptance angle --- sliding friction coefficient --- comparability of test methods --- wall temperature --- fibre bragg grating sensors --- freeze-thaw cycles --- signal analysis --- short-time Fourier transform --- fast Fourier transform --- brine --- sodium chloride --- X-ray --- partition walls --- brick walls --- bending strength --- cracking --- post-tension --- cable --- girder --- destructive test --- non-destructive test --- structural health monitoring --- safety --- monitoring fibre Bragg grating --- mining areas --- strain/stress distribution --- geopolymer concrete --- fly-ash --- bottom-ash --- neural network --- sustainability --- industrial waste management --- flexural strength --- cladding --- AE acoustic emission --- micro-events --- sound spectrum --- traditional and quasi-brittle cement composites --- residual-state creep --- saturation front --- landslides --- erosional stability --- laboratory testing --- grout mixtures --- groundwater --- test apparatus --- testing --- building materials --- elements


Book
Testing of Materials and Elements in Civil Engineering,
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained.

Keywords

Technology. --- rock bolt --- grouting quality --- dynamic response --- natural frequency --- finite element method --- monitoring --- historical masonry wall --- hygrothermal processes --- internal insulation --- testing of building materials --- test uncertainty --- validation of test methods --- sustainable test methods --- recycling --- foamed asphalt mixtures with cement (FAC) --- base layer --- reclaimed asphalt pavement (RAP) --- fatigue durability --- GFRP --- FRP reinforcement --- shear --- capacity --- reinforced concrete beams --- column --- stiffness --- FRCM --- PBO mesh --- PBO–FRCM --- carpentry joints --- scarf and splice joints --- stop-splayed scarf joints (‘bolt of lightning’) --- static behaviour --- experimental research --- concrete --- non-destructive testing --- ultrasounds --- ultrasonic tomography --- acoustic methods --- defects --- diagnostic --- detection --- convolutional neural networks --- transfer learning --- monitoring FBG --- power transmission tower --- civil engineering --- X-ray microtomography --- microstructure characteristics --- infiltration damage --- high-strength concrete --- steel fibres --- flexural tensile strength --- fracture energy --- numerical analysis --- concrete floors --- compressive strength --- strength distribution --- industrial floors --- ultrasound tests --- ventilated facades --- large-scale facade model --- fire safety --- fiber cement board --- large-slab ceramic tile --- plasterboards --- moisture content --- hydration processes --- mechanical properties --- ultrasound measurements --- ESD resin --- expansion joint --- quasi-plastic material --- energy absorption --- asphalt mix --- compaction index --- volumetric parameters --- stiffness modulus --- moisture resistance --- roughness --- texture --- close-range photogrammetry --- bond strength --- random field generation --- semivariograms --- hybrid truss bridge --- steel–concrete connection joint --- mechanical behavior --- failure mode --- strain --- static test --- static elastic modulus --- dynamic elastic modulus --- machine learning --- P-wave --- S-wave --- resonance frequency test --- nondestructive method --- Al–Ti laminate --- fracture --- acoustic emission diagnostic --- pattern recognition --- clustering AE signal --- storage systems --- tab connector --- flexural test --- capable design moment --- restrained ring test --- autogenous shrinkage cracking --- concrete cracking test --- concrete shrinkage cracking test --- restrined ring calibration --- cement–fiber boards --- acoustic emission method --- k-means algorithm --- wavelet analysis --- fiber composites --- ground penetrating radar (GPR) --- HMA dielectric constant --- road pavement thickness estimation --- early age concrete --- damage processes detection before loading --- strength of structures --- aggregate --- classification --- wire mesh --- roundness --- tilting angle --- opening size --- concrete centrifugation --- morphology --- image processing --- porosity --- cement --- waste paper sludge ash (WPSA) --- controlled low-strength material (CLSM) --- unconfined compressive strength --- bearing capacity --- backfill material --- P-wave velocity --- amplitude attenuation --- resistivity --- CT scan --- sandstone --- damage variable --- nuclear magnetic resonance --- spin-lattice relaxometry --- proton --- hydration kinetics --- superplasticizer --- ready-mixed concrete --- construction material --- quality assessment --- conformity criteria --- statistical-fuzzy method --- FRTP --- rivet --- connection --- polyethylene pipe --- mechanical properties of polyethylene --- resistance strain --- computer simulation --- residual shear stress --- particle crushing --- ring shear test --- particle flow code (PFC2D) --- frictional work --- fibre-reinforced concrete --- recycled steel fibres --- micro-computed tomography --- scanning electron microscopy --- tensile strength --- reinforced concrete --- diagnostic testing --- corrosion --- carbonation --- galvanostatic pulse method --- phase composition analysis --- X-ray analysis --- thermal analysis --- quasi-brittle cement composites --- low-module polypropylene fibres --- elastic range --- digital image correlation --- Arcan shear test --- wood --- orthotropic shear modulus --- elastic-plastic material --- shear wave velocity --- sand --- bender elements test --- grain-size characteristics --- complex modulus --- shrinkage analysis --- reclaimed asphalt --- mineral–cement emulsion mixtures --- cement dusty by-products (UCPPs) --- degradation of glass panels --- effective area ratio --- relative mass loss --- visible light transmittance --- windblown sand --- wood-plastic composites --- methods of testing resistance to fungi --- methods of assessment --- ground-penetrating radar (GPR) --- non-destructive techniques (NDT) --- corrosion of reinforcement --- slip resistance --- granite floor --- slip resistance value --- ramp test --- acceptance angle --- sliding friction coefficient --- comparability of test methods --- wall temperature --- fibre bragg grating sensors --- freeze-thaw cycles --- signal analysis --- short-time Fourier transform --- fast Fourier transform --- brine --- sodium chloride --- X-ray --- partition walls --- brick walls --- bending strength --- cracking --- post-tension --- cable --- girder --- destructive test --- non-destructive test --- structural health monitoring --- safety --- monitoring fibre Bragg grating --- mining areas --- strain/stress distribution --- geopolymer concrete --- fly-ash --- bottom-ash --- neural network --- sustainability --- industrial waste management --- flexural strength --- cladding --- AE acoustic emission --- micro-events --- sound spectrum --- traditional and quasi-brittle cement composites --- residual-state creep --- saturation front --- landslides --- erosional stability --- laboratory testing --- grout mixtures --- groundwater --- test apparatus --- testing --- building materials --- elements


Book
Testing of Materials and Elements in Civil Engineering,
Author:
Year: 2021 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained.

Keywords

Technology. --- rock bolt --- grouting quality --- dynamic response --- natural frequency --- finite element method --- monitoring --- historical masonry wall --- hygrothermal processes --- internal insulation --- testing of building materials --- test uncertainty --- validation of test methods --- sustainable test methods --- recycling --- foamed asphalt mixtures with cement (FAC) --- base layer --- reclaimed asphalt pavement (RAP) --- fatigue durability --- GFRP --- FRP reinforcement --- shear --- capacity --- reinforced concrete beams --- column --- stiffness --- FRCM --- PBO mesh --- PBO–FRCM --- carpentry joints --- scarf and splice joints --- stop-splayed scarf joints (‘bolt of lightning’) --- static behaviour --- experimental research --- concrete --- non-destructive testing --- ultrasounds --- ultrasonic tomography --- acoustic methods --- defects --- diagnostic --- detection --- convolutional neural networks --- transfer learning --- monitoring FBG --- power transmission tower --- civil engineering --- X-ray microtomography --- microstructure characteristics --- infiltration damage --- high-strength concrete --- steel fibres --- flexural tensile strength --- fracture energy --- numerical analysis --- concrete floors --- compressive strength --- strength distribution --- industrial floors --- ultrasound tests --- ventilated facades --- large-scale facade model --- fire safety --- fiber cement board --- large-slab ceramic tile --- plasterboards --- moisture content --- hydration processes --- mechanical properties --- ultrasound measurements --- ESD resin --- expansion joint --- quasi-plastic material --- energy absorption --- asphalt mix --- compaction index --- volumetric parameters --- stiffness modulus --- moisture resistance --- roughness --- texture --- close-range photogrammetry --- bond strength --- random field generation --- semivariograms --- hybrid truss bridge --- steel–concrete connection joint --- mechanical behavior --- failure mode --- strain --- static test --- static elastic modulus --- dynamic elastic modulus --- machine learning --- P-wave --- S-wave --- resonance frequency test --- nondestructive method --- Al–Ti laminate --- fracture --- acoustic emission diagnostic --- pattern recognition --- clustering AE signal --- storage systems --- tab connector --- flexural test --- capable design moment --- restrained ring test --- autogenous shrinkage cracking --- concrete cracking test --- concrete shrinkage cracking test --- restrined ring calibration --- cement–fiber boards --- acoustic emission method --- k-means algorithm --- wavelet analysis --- fiber composites --- ground penetrating radar (GPR) --- HMA dielectric constant --- road pavement thickness estimation --- early age concrete --- damage processes detection before loading --- strength of structures --- aggregate --- classification --- wire mesh --- roundness --- tilting angle --- opening size --- concrete centrifugation --- morphology --- image processing --- porosity --- cement --- waste paper sludge ash (WPSA) --- controlled low-strength material (CLSM) --- unconfined compressive strength --- bearing capacity --- backfill material --- P-wave velocity --- amplitude attenuation --- resistivity --- CT scan --- sandstone --- damage variable --- nuclear magnetic resonance --- spin-lattice relaxometry --- proton --- hydration kinetics --- superplasticizer --- ready-mixed concrete --- construction material --- quality assessment --- conformity criteria --- statistical-fuzzy method --- FRTP --- rivet --- connection --- polyethylene pipe --- mechanical properties of polyethylene --- resistance strain --- computer simulation --- residual shear stress --- particle crushing --- ring shear test --- particle flow code (PFC2D) --- frictional work --- fibre-reinforced concrete --- recycled steel fibres --- micro-computed tomography --- scanning electron microscopy --- tensile strength --- reinforced concrete --- diagnostic testing --- corrosion --- carbonation --- galvanostatic pulse method --- phase composition analysis --- X-ray analysis --- thermal analysis --- quasi-brittle cement composites --- low-module polypropylene fibres --- elastic range --- digital image correlation --- Arcan shear test --- wood --- orthotropic shear modulus --- elastic-plastic material --- shear wave velocity --- sand --- bender elements test --- grain-size characteristics --- complex modulus --- shrinkage analysis --- reclaimed asphalt --- mineral–cement emulsion mixtures --- cement dusty by-products (UCPPs) --- degradation of glass panels --- effective area ratio --- relative mass loss --- visible light transmittance --- windblown sand --- wood-plastic composites --- methods of testing resistance to fungi --- methods of assessment --- ground-penetrating radar (GPR) --- non-destructive techniques (NDT) --- corrosion of reinforcement --- slip resistance --- granite floor --- slip resistance value --- ramp test --- acceptance angle --- sliding friction coefficient --- comparability of test methods --- wall temperature --- fibre bragg grating sensors --- freeze-thaw cycles --- signal analysis --- short-time Fourier transform --- fast Fourier transform --- brine --- sodium chloride --- X-ray --- partition walls --- brick walls --- bending strength --- cracking --- post-tension --- cable --- girder --- destructive test --- non-destructive test --- structural health monitoring --- safety --- monitoring fibre Bragg grating --- mining areas --- strain/stress distribution --- geopolymer concrete --- fly-ash --- bottom-ash --- neural network --- sustainability --- industrial waste management --- flexural strength --- cladding --- AE acoustic emission --- micro-events --- sound spectrum --- traditional and quasi-brittle cement composites --- residual-state creep --- saturation front --- landslides --- erosional stability --- laboratory testing --- grout mixtures --- groundwater --- test apparatus --- testing --- building materials --- elements

Listing 1 - 10 of 12 << page
of 2
>>
Sort by