Listing 1 - 6 of 6 |
Sort by
|
Choose an application
In recent years, the implementation of sustainable concrete systems has been a topic of great interest in the field of construction engineering worldwide, as a result of the large and rapid increase in carbon emissions and environmental problems resulting from traditional concrete production and industry. For example, the uses of supplementary cementitious materials, geopolymer binder, recycled aggregate and industrial/agricultural wastes in concrete are all approaches to building a sustainable concrete system. However, such materials have inherent flaws due to their variety of sources, and exhibit very different properties compared with traditional concrete. Therefore, they require specific modifications in preprocessing, design, and evaluation before use in concrete. This reprint, entitled “Advances in Sustainable Concrete System”, covers a broad range of advanced concrete research in environmentally friendly concretes, cost-effective admixtures, and waste recycling, specifically including the design methods, mechanical properties, durability, microstructure, various models, hydration mechanisms, and practical applications of solid wastes in concrete systems.
Technology: general issues --- History of engineering & technology --- Conservation of buildings & building materials --- high-strength concrete --- energy evolution --- elastic strain energy --- brittleness evaluation index --- concrete --- humidity --- moisture absorption --- moisture desorption --- numerical simulation --- acoustic emission --- AE rate process theory --- corrosion rate --- damage evolution --- axial load --- precast concrete structure --- lattice girder semi-precast slabs --- bending resistance --- FE modelling --- concrete damage --- GSP --- high strength --- hydration --- strength --- penetrability --- rice husk ash --- sustainable concrete --- artificial neural networks --- multiple linear regression --- eco-friendly concrete --- green concrete --- sustainable development --- artificial intelligence --- data science --- machine learning --- bagasse ash --- mechanical properties --- natural coarse aggregate --- recycled coarse aggregate --- two-stage concrete --- materials design --- recycled concrete --- crumb rubber concrete --- crumb rubber --- NaOH treatment --- lime treatment --- water treatment --- detergent treatment --- compressive strength --- materials --- adhesively-bonded joint --- temperature aging --- residual strength --- mechanical behavior --- failure criterion --- steel slag powder --- compound activator --- mortar strength --- orthogonal experiment --- GM (0, N) model --- ultrafine metakaolin --- silica fume --- durability --- fiber-reinforced concrete --- damage mechanism --- uniaxial tension --- cracked concrete --- crack width --- crack depth --- tortuosity --- sustainability --- concrete composites --- sulfate and acid attacks --- WPFT fibers --- coal gangue --- gradation --- cement content --- unconfined compressive strength --- freeze-thaw cycle --- minimum energy dissipation principle --- three-shear energy yield criterion --- damage variable --- constitutive model --- phosphorus slag --- limestone --- sulphate-corrosion resistance --- volume deformation --- blast furnace ferronickel slag --- alkali-activated material --- dosage of activator --- reactive powder concrete --- beam-column joint --- FE modeling --- crack --- cementitious gravel --- fly ash --- age --- optimal dosage --- bamboo --- sawdust --- pretreatment --- bio-based material --- mechanical property --- self-compacting concrete --- supplementary cementitious materials --- hydration mechanisms --- microstructure --- fresh properties --- synthetic polymer --- high temperature --- bentonite-free drilling fluid --- rheology --- filtration --- FRP reinforced concrete slab --- punching shear strength --- SHAP --- high-strength concrete --- energy evolution --- elastic strain energy --- brittleness evaluation index --- concrete --- humidity --- moisture absorption --- moisture desorption --- numerical simulation --- acoustic emission --- AE rate process theory --- corrosion rate --- damage evolution --- axial load --- precast concrete structure --- lattice girder semi-precast slabs --- bending resistance --- FE modelling --- concrete damage --- GSP --- high strength --- hydration --- strength --- penetrability --- rice husk ash --- sustainable concrete --- artificial neural networks --- multiple linear regression --- eco-friendly concrete --- green concrete --- sustainable development --- artificial intelligence --- data science --- machine learning --- bagasse ash --- mechanical properties --- natural coarse aggregate --- recycled coarse aggregate --- two-stage concrete --- materials design --- recycled concrete --- crumb rubber concrete --- crumb rubber --- NaOH treatment --- lime treatment --- water treatment --- detergent treatment --- compressive strength --- materials --- adhesively-bonded joint --- temperature aging --- residual strength --- mechanical behavior --- failure criterion --- steel slag powder --- compound activator --- mortar strength --- orthogonal experiment --- GM (0, N) model --- ultrafine metakaolin --- silica fume --- durability --- fiber-reinforced concrete --- damage mechanism --- uniaxial tension --- cracked concrete --- crack width --- crack depth --- tortuosity --- sustainability --- concrete composites --- sulfate and acid attacks --- WPFT fibers --- coal gangue --- gradation --- cement content --- unconfined compressive strength --- freeze-thaw cycle --- minimum energy dissipation principle --- three-shear energy yield criterion --- damage variable --- constitutive model --- phosphorus slag --- limestone --- sulphate-corrosion resistance --- volume deformation --- blast furnace ferronickel slag --- alkali-activated material --- dosage of activator --- reactive powder concrete --- beam-column joint --- FE modeling --- crack --- cementitious gravel --- fly ash --- age --- optimal dosage --- bamboo --- sawdust --- pretreatment --- bio-based material --- mechanical property --- self-compacting concrete --- supplementary cementitious materials --- hydration mechanisms --- microstructure --- fresh properties --- synthetic polymer --- high temperature --- bentonite-free drilling fluid --- rheology --- filtration --- FRP reinforced concrete slab --- punching shear strength --- SHAP
Choose an application
The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.
Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength
Choose an application
In recent years, the implementation of sustainable concrete systems has been a topic of great interest in the field of construction engineering worldwide, as a result of the large and rapid increase in carbon emissions and environmental problems resulting from traditional concrete production and industry. For example, the uses of supplementary cementitious materials, geopolymer binder, recycled aggregate and industrial/agricultural wastes in concrete are all approaches to building a sustainable concrete system. However, such materials have inherent flaws due to their variety of sources, and exhibit very different properties compared with traditional concrete. Therefore, they require specific modifications in preprocessing, design, and evaluation before use in concrete. This reprint, entitled “Advances in Sustainable Concrete System”, covers a broad range of advanced concrete research in environmentally friendly concretes, cost-effective admixtures, and waste recycling, specifically including the design methods, mechanical properties, durability, microstructure, various models, hydration mechanisms, and practical applications of solid wastes in concrete systems.
Technology: general issues --- History of engineering & technology --- Conservation of buildings & building materials --- high-strength concrete --- energy evolution --- elastic strain energy --- brittleness evaluation index --- concrete --- humidity --- moisture absorption --- moisture desorption --- numerical simulation --- acoustic emission --- AE rate process theory --- corrosion rate --- damage evolution --- axial load --- precast concrete structure --- lattice girder semi-precast slabs --- bending resistance --- FE modelling --- concrete damage --- GSP --- high strength --- hydration --- strength --- penetrability --- rice husk ash --- sustainable concrete --- artificial neural networks --- multiple linear regression --- eco-friendly concrete --- green concrete --- sustainable development --- artificial intelligence --- data science --- machine learning --- bagasse ash --- mechanical properties --- natural coarse aggregate --- recycled coarse aggregate --- two-stage concrete --- materials design --- recycled concrete --- crumb rubber concrete --- crumb rubber --- NaOH treatment --- lime treatment --- water treatment --- detergent treatment --- compressive strength --- materials --- adhesively-bonded joint --- temperature aging --- residual strength --- mechanical behavior --- failure criterion --- steel slag powder --- compound activator --- mortar strength --- orthogonal experiment --- GM (0, N) model --- ultrafine metakaolin --- silica fume --- durability --- fiber-reinforced concrete --- damage mechanism --- uniaxial tension --- cracked concrete --- crack width --- crack depth --- tortuosity --- sustainability --- concrete composites --- sulfate and acid attacks --- WPFT fibers --- coal gangue --- gradation --- cement content --- unconfined compressive strength --- freeze–thaw cycle --- minimum energy dissipation principle --- three-shear energy yield criterion --- damage variable --- constitutive model --- phosphorus slag --- limestone --- sulphate-corrosion resistance --- volume deformation --- blast furnace ferronickel slag --- alkali-activated material --- dosage of activator --- reactive powder concrete --- beam-column joint --- FE modeling --- crack --- cementitious gravel --- fly ash --- age --- optimal dosage --- bamboo --- sawdust --- pretreatment --- bio-based material --- mechanical property --- self-compacting concrete --- supplementary cementitious materials --- hydration mechanisms --- microstructure --- fresh properties --- synthetic polymer --- high temperature --- bentonite-free drilling fluid --- rheology --- filtration --- FRP reinforced concrete slab --- punching shear strength --- SHAP --- n/a --- freeze-thaw cycle
Choose an application
The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.
Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength
Choose an application
In recent years, the implementation of sustainable concrete systems has been a topic of great interest in the field of construction engineering worldwide, as a result of the large and rapid increase in carbon emissions and environmental problems resulting from traditional concrete production and industry. For example, the uses of supplementary cementitious materials, geopolymer binder, recycled aggregate and industrial/agricultural wastes in concrete are all approaches to building a sustainable concrete system. However, such materials have inherent flaws due to their variety of sources, and exhibit very different properties compared with traditional concrete. Therefore, they require specific modifications in preprocessing, design, and evaluation before use in concrete. This reprint, entitled “Advances in Sustainable Concrete System”, covers a broad range of advanced concrete research in environmentally friendly concretes, cost-effective admixtures, and waste recycling, specifically including the design methods, mechanical properties, durability, microstructure, various models, hydration mechanisms, and practical applications of solid wastes in concrete systems.
high-strength concrete --- energy evolution --- elastic strain energy --- brittleness evaluation index --- concrete --- humidity --- moisture absorption --- moisture desorption --- numerical simulation --- acoustic emission --- AE rate process theory --- corrosion rate --- damage evolution --- axial load --- precast concrete structure --- lattice girder semi-precast slabs --- bending resistance --- FE modelling --- concrete damage --- GSP --- high strength --- hydration --- strength --- penetrability --- rice husk ash --- sustainable concrete --- artificial neural networks --- multiple linear regression --- eco-friendly concrete --- green concrete --- sustainable development --- artificial intelligence --- data science --- machine learning --- bagasse ash --- mechanical properties --- natural coarse aggregate --- recycled coarse aggregate --- two-stage concrete --- materials design --- recycled concrete --- crumb rubber concrete --- crumb rubber --- NaOH treatment --- lime treatment --- water treatment --- detergent treatment --- compressive strength --- materials --- adhesively-bonded joint --- temperature aging --- residual strength --- mechanical behavior --- failure criterion --- steel slag powder --- compound activator --- mortar strength --- orthogonal experiment --- GM (0, N) model --- ultrafine metakaolin --- silica fume --- durability --- fiber-reinforced concrete --- damage mechanism --- uniaxial tension --- cracked concrete --- crack width --- crack depth --- tortuosity --- sustainability --- concrete composites --- sulfate and acid attacks --- WPFT fibers --- coal gangue --- gradation --- cement content --- unconfined compressive strength --- freeze–thaw cycle --- minimum energy dissipation principle --- three-shear energy yield criterion --- damage variable --- constitutive model --- phosphorus slag --- limestone --- sulphate-corrosion resistance --- volume deformation --- blast furnace ferronickel slag --- alkali-activated material --- dosage of activator --- reactive powder concrete --- beam-column joint --- FE modeling --- crack --- cementitious gravel --- fly ash --- age --- optimal dosage --- bamboo --- sawdust --- pretreatment --- bio-based material --- mechanical property --- self-compacting concrete --- supplementary cementitious materials --- hydration mechanisms --- microstructure --- fresh properties --- synthetic polymer --- high temperature --- bentonite-free drilling fluid --- rheology --- filtration --- FRP reinforced concrete slab --- punching shear strength --- SHAP --- n/a --- freeze-thaw cycle
Choose an application
The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.
ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength
Listing 1 - 6 of 6 |
Sort by
|