Listing 1 - 6 of 6 |
Sort by
|
Choose an application
numerical methods --- computer design innovations --- numerical models --- mathematical models --- design in engineering
Choose an application
This book describes warehouse-scale computers (WSCs), the computing platforms that power cloud computing and all the great web services we use every day. It discusses how these new systems treat the datacenter itself as one massive computer designed at warehouse scale, with hardware and software working in concert to deliver good levels of internet service performance. The book details the architecture of WSCs and covers the main factors influencing their design, operation, and cost structure, and the characteristics of their software base. Each chapter contains multiple real-world examples, including detailed case studies and previously unpublished details of the infrastructure used to power Google's online services. Targeted at the architects and programmers of today's WSCs, this book provides a great foundation for those looking to innovate in this fascinating and important area, but the material will also be broadly interesting to those who just want to understand the infrastructure powering the internet. The third edition reflects four years of advancements since the previous edition and nearly doubles the number of pictures and figures. New topics range from additional workloads like video streaming, machine learning, and public cloud to specialized silicon accelerators, storage and network building blocks, and a revised discussion of data center power and cooling, and uptime. Further discussions of emerging trends and opportunities ensure that this revised edition will remain an essential resource for educators and professionals working on the next generation of WSCs.
Web servers --- Cloud computing. --- Computer organization. --- Data libraries. --- data centers --- cloud computing --- servers --- hyperscale systems --- hardware accelerators --- Internet services --- distributed systems --- energy efficiency --- fault-tolerant computing --- cluster computing --- computer organization --- computer design --- Design.
Choose an application
This book defends that math education should systematically start out from the diverse out-of-school knowledge of children and develop trajectories from there to the Academic Mathematics tower of knowledge. Learning theories of the sociocultural school (Vygotsky and on) are used here, and ethnographic knowledge from around the world is shown to offer a rich and varied base for curricula. The book takes a political stand against the exclusively western focus in OECD analyses and proposals on math education.This book aims at agents in education and social actions in every cultural environment. But it is also attractive to mathematicians, anthropologists and other specialists. It offers a broad and scholarly view of knowledge and culture and a very original transcultural and transdisciplinarian approach to education
Education. --- Mathematics --- Educational sociology. --- Educational psychology. --- Education --- Education and sociology. --- Sociology, Educational. --- Mathematics Education. --- Educational Psychology. --- Sociology of Education. --- Study and teaching. --- Psychology. --- Knowledge, Theory of. --- Social aspects. --- Epistemology --- Theory of knowledge --- Math --- Mathematics. --- Psychology, Educational --- Psychology --- Child psychology --- Science --- Mathematics—Study and teaching . --- Education—Psychology. --- Educational sociology . --- Education and sociology --- Social problems in education --- Society and education --- Sociology, Educational --- Sociology --- Aims and objectives --- anthropological studies --- worldview --- religion --- ideology --- spehere --- mathematics education --- education in a post-industrial world --- postmodern society --- mathematics education and culture --- learning theories --- socio-cultural learning theory --- Whitehead and Dingler --- language and thought --- culture --- multimathemacy and education --- FORMA --- Frame Of Reference of Mathematical Activities --- formal thinking --- learning processes --- complex mathematical activities --- traditional building --- archaeological digging --- music --- dancing --- computer design --- storytelling --- exchange and market activities --- school --- visible learning --- assessment procedures --- learning and capabilities --- the dialogical self
Choose an application
DNA is a rapidly developing vaccine platform for cancer and infectious and non-infectious diseases. Plasmids are used as immunogens to encode proteins to be further synthesized in vaccine recipients. DNA is mainly synthetic, ensuring enhanced expression in the cells of vaccine recipients (mostly mammalians). Their introduction into the host induces antibody and cellular responses. The latter are often more pronounced, and mimic the events occurring in infection, especially viral. There are a few distinct ways in which the vaccine antigen can be processed and presented, which determine the resulting immune response and which can be manipulated. Routinely, the antigen synthesized within the host cell is processed by proteasome, loaded onto, and presented in a complex with MHC I molecules. Processing can be re-routed to the lysosome, or immunogen can be secreted for further presentation in a complex with MHC II. Apart from expression, vaccination efficacy depends on DNA delivery. DNA immunogens are generally administered by intramuscular or intradermal injections, usually followed by electroporation, which enhances delivery 1000-fold. Other techniques are also used, such as noninvasive introduction by biojectors, skin applications with plasters and microneedles/chips, sonication, magnetofection, and even tattooing. An intense debate regarding the pros and cons of different routes of delivery is ongoing. A number of studies have compared the effect of delivery methods at the level of immunogen expression, and the magnitude and specificity of the resulting immune response. According to some, the delivery route determines immunogenic performance; according to others, it can modulate the level of response, but not its specificity or polarity. The progress of research aiming at the optimization of DNA vaccine design, delivery, and immunogenic performance has led to a marked increase in their efficacy in large species and humans. New DNA vaccines for use in the treatment of infectious diseases, cancer, allergies, and autoimmunity are forthcoming. This Special Issue covers various aspects of DNA vaccine development.
Medicine --- Epidemiology & medical statistics --- alphaviruses --- layered RNA/DNA vectors --- DNA vaccines --- RNA replicons --- recombinant particles --- tumor regression --- protection against tumor challenges and infectious agents --- ebola virus disease --- artificial T-cell antigens --- DNA vaccine constructs --- computer design --- gene expression --- immunogenicity --- DNA vaccine --- mRNA vaccine --- plasmid DNA --- in vitro transcribed mRNA --- immune responses --- formulations --- Cytolytic T Lymphocytes --- antibodies --- innate immunity --- adjuvants --- vaccine delivery --- plasmid --- cytolytic --- perforin --- bicistronic --- HCV --- HIV --- IL-36 --- adjuvant --- DNA --- Zika --- Epstein-Barr virus --- latent proteins --- LMP2 --- EBNA1 --- LMP1 --- HIV-1 --- enhancer element --- circovirus --- influenza --- immunization --- intranasal --- lipid --- flagellin --- BCG --- vaccine --- rBCG --- HTI --- T-cell --- AIDS --- clinical trial --- therapeutic vaccine --- hepatitis C virus (HCV) --- mesenchymal stem cells (MSC) --- modified MSC --- DNA immunization --- nonstructural HCV proteins --- immune response --- HCV vaccine --- myeloid derived suppressor cells (MDSCs) --- n/a
Choose an application
DNA is a rapidly developing vaccine platform for cancer and infectious and non-infectious diseases. Plasmids are used as immunogens to encode proteins to be further synthesized in vaccine recipients. DNA is mainly synthetic, ensuring enhanced expression in the cells of vaccine recipients (mostly mammalians). Their introduction into the host induces antibody and cellular responses. The latter are often more pronounced, and mimic the events occurring in infection, especially viral. There are a few distinct ways in which the vaccine antigen can be processed and presented, which determine the resulting immune response and which can be manipulated. Routinely, the antigen synthesized within the host cell is processed by proteasome, loaded onto, and presented in a complex with MHC I molecules. Processing can be re-routed to the lysosome, or immunogen can be secreted for further presentation in a complex with MHC II. Apart from expression, vaccination efficacy depends on DNA delivery. DNA immunogens are generally administered by intramuscular or intradermal injections, usually followed by electroporation, which enhances delivery 1000-fold. Other techniques are also used, such as noninvasive introduction by biojectors, skin applications with plasters and microneedles/chips, sonication, magnetofection, and even tattooing. An intense debate regarding the pros and cons of different routes of delivery is ongoing. A number of studies have compared the effect of delivery methods at the level of immunogen expression, and the magnitude and specificity of the resulting immune response. According to some, the delivery route determines immunogenic performance; according to others, it can modulate the level of response, but not its specificity or polarity. The progress of research aiming at the optimization of DNA vaccine design, delivery, and immunogenic performance has led to a marked increase in their efficacy in large species and humans. New DNA vaccines for use in the treatment of infectious diseases, cancer, allergies, and autoimmunity are forthcoming. This Special Issue covers various aspects of DNA vaccine development.
alphaviruses --- layered RNA/DNA vectors --- DNA vaccines --- RNA replicons --- recombinant particles --- tumor regression --- protection against tumor challenges and infectious agents --- ebola virus disease --- artificial T-cell antigens --- DNA vaccine constructs --- computer design --- gene expression --- immunogenicity --- DNA vaccine --- mRNA vaccine --- plasmid DNA --- in vitro transcribed mRNA --- immune responses --- formulations --- Cytolytic T Lymphocytes --- antibodies --- innate immunity --- adjuvants --- vaccine delivery --- plasmid --- cytolytic --- perforin --- bicistronic --- HCV --- HIV --- IL-36 --- adjuvant --- DNA --- Zika --- Epstein-Barr virus --- latent proteins --- LMP2 --- EBNA1 --- LMP1 --- HIV-1 --- enhancer element --- circovirus --- influenza --- immunization --- intranasal --- lipid --- flagellin --- BCG --- vaccine --- rBCG --- HTI --- T-cell --- AIDS --- clinical trial --- therapeutic vaccine --- hepatitis C virus (HCV) --- mesenchymal stem cells (MSC) --- modified MSC --- DNA immunization --- nonstructural HCV proteins --- immune response --- HCV vaccine --- myeloid derived suppressor cells (MDSCs) --- n/a
Choose an application
DNA is a rapidly developing vaccine platform for cancer and infectious and non-infectious diseases. Plasmids are used as immunogens to encode proteins to be further synthesized in vaccine recipients. DNA is mainly synthetic, ensuring enhanced expression in the cells of vaccine recipients (mostly mammalians). Their introduction into the host induces antibody and cellular responses. The latter are often more pronounced, and mimic the events occurring in infection, especially viral. There are a few distinct ways in which the vaccine antigen can be processed and presented, which determine the resulting immune response and which can be manipulated. Routinely, the antigen synthesized within the host cell is processed by proteasome, loaded onto, and presented in a complex with MHC I molecules. Processing can be re-routed to the lysosome, or immunogen can be secreted for further presentation in a complex with MHC II. Apart from expression, vaccination efficacy depends on DNA delivery. DNA immunogens are generally administered by intramuscular or intradermal injections, usually followed by electroporation, which enhances delivery 1000-fold. Other techniques are also used, such as noninvasive introduction by biojectors, skin applications with plasters and microneedles/chips, sonication, magnetofection, and even tattooing. An intense debate regarding the pros and cons of different routes of delivery is ongoing. A number of studies have compared the effect of delivery methods at the level of immunogen expression, and the magnitude and specificity of the resulting immune response. According to some, the delivery route determines immunogenic performance; according to others, it can modulate the level of response, but not its specificity or polarity. The progress of research aiming at the optimization of DNA vaccine design, delivery, and immunogenic performance has led to a marked increase in their efficacy in large species and humans. New DNA vaccines for use in the treatment of infectious diseases, cancer, allergies, and autoimmunity are forthcoming. This Special Issue covers various aspects of DNA vaccine development.
Medicine --- Epidemiology & medical statistics --- alphaviruses --- layered RNA/DNA vectors --- DNA vaccines --- RNA replicons --- recombinant particles --- tumor regression --- protection against tumor challenges and infectious agents --- ebola virus disease --- artificial T-cell antigens --- DNA vaccine constructs --- computer design --- gene expression --- immunogenicity --- DNA vaccine --- mRNA vaccine --- plasmid DNA --- in vitro transcribed mRNA --- immune responses --- formulations --- Cytolytic T Lymphocytes --- antibodies --- innate immunity --- adjuvants --- vaccine delivery --- plasmid --- cytolytic --- perforin --- bicistronic --- HCV --- HIV --- IL-36 --- adjuvant --- DNA --- Zika --- Epstein-Barr virus --- latent proteins --- LMP2 --- EBNA1 --- LMP1 --- HIV-1 --- enhancer element --- circovirus --- influenza --- immunization --- intranasal --- lipid --- flagellin --- BCG --- vaccine --- rBCG --- HTI --- T-cell --- AIDS --- clinical trial --- therapeutic vaccine --- hepatitis C virus (HCV) --- mesenchymal stem cells (MSC) --- modified MSC --- DNA immunization --- nonstructural HCV proteins --- immune response --- HCV vaccine --- myeloid derived suppressor cells (MDSCs)
Listing 1 - 6 of 6 |
Sort by
|